Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex
- PMID: 18977732
- PMCID: PMC2674473
- DOI: 10.1098/rstb.2008.0198
Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex
Abstract
As in other mammals with binocular vision, monocular lid suture in mice induces bidirectional plasticity: rapid weakening of responses evoked through the deprived eye followed by delayed strengthening of responses through the open eye. It has been proposed that these bidirectional changes occur through three distinct processes: first, deprived-eye responses rapidly weaken through homosynaptic long-term depression (LTD); second, as the period of deprivation progresses, the modification threshold determining the boundary between synaptic depression and synaptic potentiation becomes lower, favouring potentiation; and third, facilitated by the decreased modification threshold, open-eye responses are strengthened via homosynaptic long-term potentiation (LTP). Of these processes, deprived-eye depression has received the greatest attention, and although several alternative hypotheses are also supported by current research, evidence suggests that alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor endocytosis through LTD is a key mechanism. The change in modification threshold appears to occur partly through changes in N-methyl-D-aspartate (NMDA) receptor subunit composition, with decreases in the ratio of NR2A to NR2B facilitating potentiation. Although limited research has directly addressed the question of open-eye potentiation, several studies suggest that LTP could account for observed changes in vivo. This review will discuss evidence supporting this three-stage model, along with outstanding issues in the field.
Figures
Similar articles
-
Blockade of GluN2B-Containing NMDA Receptors Prevents Potentiation and Depression of Responses during Ocular Dominance Plasticity.J Neurosci. 2024 Sep 4;44(36):e0021232024. doi: 10.1523/JNEUROSCI.0021-23.2024. J Neurosci. 2024. PMID: 39117456
-
LTP and LTD vary with layer in rodent visual cortex.Vision Res. 2004 Dec;44(28):3377-80. doi: 10.1016/j.visres.2004.09.004. Vision Res. 2004. PMID: 15536005 Review.
-
Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.Eur J Neurosci. 2008 Aug;28(4):730-43. doi: 10.1111/j.1460-9568.2008.06384.x. Epub 2008 Jul 24. Eur J Neurosci. 2008. PMID: 18657180
-
The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex.Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5377-82. doi: 10.1073/pnas.0808104106. Epub 2009 Mar 10. Proc Natl Acad Sci U S A. 2009. PMID: 19276107 Free PMC article.
-
How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex.Philos Trans R Soc Lond B Biol Sci. 2013 Dec 2;369(1633):20130284. doi: 10.1098/rstb.2013.0284. Print 2014 Jan 5. Philos Trans R Soc Lond B Biol Sci. 2013. PMID: 24298166 Free PMC article. Review.
Cited by
-
Early alcohol exposure disrupts visual cortex plasticity in mice.Int J Dev Neurosci. 2012 Aug;30(5):351-7. doi: 10.1016/j.ijdevneu.2012.05.001. Epub 2012 May 14. Int J Dev Neurosci. 2012. PMID: 22617459 Free PMC article.
-
Stress-induced priming of glutamate synapses unmasks associative short-term plasticity.Nat Neurosci. 2010 Oct;13(10):1257-64. doi: 10.1038/nn.2629. Epub 2010 Sep 5. Nat Neurosci. 2010. PMID: 20818385
-
Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex.Neuron. 2010 May 27;66(4):493-500. doi: 10.1016/j.neuron.2010.04.012. Neuron. 2010. PMID: 20510854 Free PMC article.
-
Cell death triggers olfactory circuit plasticity via glial signaling in Drosophila.J Neurosci. 2011 May 25;31(21):7619-30. doi: 10.1523/JNEUROSCI.5984-10.2011. J Neurosci. 2011. PMID: 21613475 Free PMC article.
-
Homeostatic plasticity in the visual thalamus by monocular deprivation.J Neurosci. 2011 May 4;31(18):6842-9. doi: 10.1523/JNEUROSCI.1173-11.2011. J Neurosci. 2011. PMID: 21543614 Free PMC article.
References
-
- Abraham W.C., Bear M.F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 1996;19:126–130. doi:10.1016/S0166-2236(96)80018-X - DOI - PubMed
-
- Aizenman C.D., Pratt K.G. There's more than one way to scale a synapse. Neuron. 2008;58:651–653. doi:10.1016/j.neuron.2008.05.017 - DOI - PubMed
-
- Barria A., Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005;48:289–301. doi:10.1016/j.neuron.2005.08.034 - DOI - PubMed
-
- Bastrikova N., Gardner G.A., Reece J.M., Jeromin A., Dudek S.M. Synapse elimination accompanies functional plasticity in hippocampal neurons. Proc. Natl Acad. Sci. USA. 2008;105:3123–3127. doi:10.1073/pnas.0800027105 - DOI - PMC - PubMed
-
- Bear M.F. Bidirectional synaptic plasticity: from theory to reality. Phil. Trans. R. Soc. B. 2003;358:649–655. doi:10.1098/rstb.2002.1255 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
