Measuring brain lesion progression with a supervised tissue classification system

Med Image Comput Comput Assist Interv. 2008;11(Pt 1):620-7. doi: 10.1007/978-3-540-85988-8_74.


Brain lesions, especially White Matter Lesions (WMLs), are associated with cardiac and vascular disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more important. In this paper, we present a computer-assisted WML segmentation method, based on local features extracted from conventional multi-parametric Magnetic Resonance Imaging (MRI) sequences. A framework for preprocessing the temporal data by jointly equalizing histograms reduces the spatial and temporal variance of data, thereby improving the longitudinal stability of such measurements and hence the estimate of lesion progression. A Support Vector Machine (SVM) classifier trained on expert-defined WML's is applied for lesion segmentation on each scan using the AdaBoost algorithm. Validation on a population of 23 patients from 3 different imaging sites with follow-up studies and WMLs of varying sizes, shapes and locations tests the robustness and accuracy of the proposed segmentation method, compared to the manual segmentation results from an experienced neuroradiologist. The results show that our CAD-system achieves consistent lesion segmentation in the 4D data facilitating the disease monitoring.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Brain Neoplasms / diagnosis*
  • Disease Progression
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Subtraction Technique*