Covariate adjustment in randomized trials with binary outcomes: targeted maximum likelihood estimation

Stat Med. 2009 Jan 15;28(1):39-64. doi: 10.1002/sim.3445.


Covariate adjustment using linear models for continuous outcomes in randomized trials has been shown to increase efficiency and power over the unadjusted method in estimating the marginal effect of treatment. However, for binary outcomes, investigators generally rely on the unadjusted estimate as the literature indicates that covariate-adjusted estimates based on the logistic regression models are less efficient. The crucial step that has been missing when adjusting for covariates is that one must integrate/average the adjusted estimate over those covariates in order to obtain the marginal effect. We apply the method of targeted maximum likelihood estimation (tMLE) to obtain estimators for the marginal effect using covariate adjustment for binary outcomes. We show that the covariate adjustment in randomized trials using the logistic regression models can be mapped, by averaging over the covariate(s), to obtain a fully robust and efficient estimator of the marginal effect, which equals a targeted maximum likelihood estimator. This tMLE is obtained by simply adding a clever covariate to a fixed initial regression. We present simulation studies that demonstrate that this tMLE increases efficiency and power over the unadjusted method, particularly for smaller sample sizes, even when the regression model is mis-specified.

MeSH terms

  • Humans
  • Likelihood Functions*
  • Linear Models*
  • Randomized Controlled Trials as Topic / statistics & numerical data*
  • Treatment Outcome