Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Nov;9(11):938-47.
doi: 10.2174/138945008786786091.

Discovery of novel vaccine candidates and drug targets against visceral leishmaniasis using proteomics and transcriptomics

Affiliations
Review

Discovery of novel vaccine candidates and drug targets against visceral leishmaniasis using proteomics and transcriptomics

Shraddha Kumari et al. Curr Drug Targets. 2008 Nov.

Abstract

Among the three clinical forms (cutaneous, mucosal and visceral) of leishmaniasis visceral (VL) one is the most devastating type caused by the invasion of the reticuloendothelial system of human by Leishmania donovani, L. infantum and L. chagasi. India and Sudan account for about half the world's burden of VL. Current control strategy is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective due to the emergence of drug resistance. An understanding of resistance mechanism(s) operating in clinical isolates might provide additional leads for the development of new drugs. Further, due to the lack of fully effective treatment the search for novel immune targets is also needed. So far, no vaccine exists for VL despite indications of naturally developing immunity. Therefore, an urgent need for new and effective leishmanicidal agents and for this identification of novel drug and vaccine targets is imperative. The availability of the complete genome sequence of Leishmania has revolutionised many areas of leishmanial research and facilitated functional genomic studies as well as provided a wide range of novel targets for drug designing. Most notably, proteomics and transcriptomics have become important tools in gaining increased understanding of the biology of Leishmania to be explored on a global scale, thus accelerating the pace of discovery of vaccine/drug targets. In addition, these approaches provide the information regarding genes and proteins that are expressed and under which conditions. This review provides a comprehensive view about those proteins/genes identified using proteomics and transcriptomic tools for the development of vaccine/drug against VL.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources