Photoinduced metal-to-insulator transition in a manganite thin film

Phys Rev Lett. 2008 Oct 24;101(17):177403. doi: 10.1103/PhysRevLett.101.177403. Epub 2008 Oct 23.

Abstract

A persistent photoinduced metal-to-insulator transition has been confirmed in a manganite thin film, Pr_(0.55)(Ca_(0.75)Sr_(0.25))_(0.45)MnO3, near a multicritical point by monitoring with transport measurements and x-ray photoemission spectroscopy. Together with the previously reported reverse effect, the photoinduced insulator-to-metal transition, it is found that the relative stability of the metallic and insulating phases interchanges around 80 K in the middle of a very wide hysteresis loop, which is a manifestation of the large potential barrier due to the long-range elastic energy. It is shown that photons are much more effective in overcoming the barrier via the electronically excited intermediate states than via the heat mode.