Firing patterns in the adaptive exponential integrate-and-fire model
- PMID: 19011922
- PMCID: PMC2798047
- DOI: 10.1007/s00422-008-0264-7
Firing patterns in the adaptive exponential integrate-and-fire model
Abstract
For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.
Figures
Similar articles
-
Synchronised firing patterns in a random network of adaptive exponential integrate-and-fire neuron model.Neural Netw. 2017 Jun;90:1-7. doi: 10.1016/j.neunet.2017.03.005. Epub 2017 Mar 16. Neural Netw. 2017. PMID: 28365399
-
Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.Neural Comput. 2004 Oct;16(10):2125-95. doi: 10.1162/0899766041732413. Neural Comput. 2004. PMID: 15333210
-
A generalized linear integrate-and-fire neural model produces diverse spiking behaviors.Neural Comput. 2009 Mar;21(3):704-18. doi: 10.1162/neco.2008.12-07-680. Neural Comput. 2009. PMID: 18928368 Free PMC article.
-
Resonate-and-fire neurons.Neural Netw. 2001 Jul-Sep;14(6-7):883-94. doi: 10.1016/s0893-6080(01)00078-8. Neural Netw. 2001. PMID: 11665779 Review.
-
A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input.Biol Cybern. 2006 Jul;95(1):1-19. doi: 10.1007/s00422-006-0068-6. Epub 2006 Apr 19. Biol Cybern. 2006. PMID: 16622699 Review.
Cited by
-
Influence of Delayed Conductance on Neuronal Synchronization.Front Physiol. 2020 Sep 3;11:1053. doi: 10.3389/fphys.2020.01053. eCollection 2020. Front Physiol. 2020. PMID: 33013451 Free PMC article.
-
Astrocyte-mediated neuronal irregularities and dynamics: the complexity of the tripartite synapse.Biol Cybern. 2024 Dec;118(5-6):249-266. doi: 10.1007/s00422-024-00994-z. Epub 2024 Sep 14. Biol Cybern. 2024. PMID: 39276225
-
A cerebellum inspired spiking neural network as a multi-model for pattern classification and robotic trajectory prediction.Front Neurosci. 2022 Nov 28;16:909146. doi: 10.3389/fnins.2022.909146. eCollection 2022. Front Neurosci. 2022. PMID: 36518530 Free PMC article.
-
An Efficient Population Density Method for Modeling Neural Networks with Synaptic Dynamics Manifesting Finite Relaxation Time and Short-Term Plasticity.eNeuro. 2019 Jan 17;5(6):ENEURO.0002-18.2018. doi: 10.1523/ENEURO.0002-18.2018. eCollection 2018 Nov-Dec. eNeuro. 2019. PMID: 30662939 Free PMC article.
-
On the Use of a Multimodal Optimizer for Fitting Neuron Models. Application to the Cerebellar Granule Cell.Front Neuroinform. 2021 Jun 3;15:663797. doi: 10.3389/fninf.2021.663797. eCollection 2021. Front Neuroinform. 2021. PMID: 34149387 Free PMC article.
References
-
- Badel L, Lefort S, Brette R, Petersen C, Gerstner W, Richardson M (2007) Dynamic i−v curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol. doi:10.1152/jn.01107.2007 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
