CRF1 and CRF2 receptors are required for potentiated startle to contextual but not discrete cues

Neuropsychopharmacology. 2009 May;34(6):1494-503. doi: 10.1038/npp.2008.205. Epub 2008 Nov 19.

Abstract

Corticotropin-releasing factor (CRF) peptides and their receptors have crucial roles in behavioral and endocrine responses to stress. Dysregulation of CRF signaling has been linked to post-traumatic stress disorder, which is associated with increased startle reactivity in response to threat. Thus, understanding the mechanisms underlying CRF regulation of startle may identify pathways involved in this disorder. Here, we tested the hypothesis that both CRF1 and CRF2 receptors contribute to fear-induced increases in startle. Startle responses of wild type (WT) and mice with null mutations (knockout, KO) for CRF1 or CRF2 receptor genes were measured immediately after footshock (shock sensitization) or in the presence of cues previously associated with footshock (ie fear-potentiated startle, FPS). WT mice exhibited robust increases in startle immediately after footshock, which was dependent upon contextual cues. This effect was completely absent in CRF1 KO mice, and significantly attenuated in CRF2 KO mice. In contrast, CRF1 and CRF2 KO mice exhibited normal potentiation of startle by discrete conditioned cues. Blockade of both receptors via CRF1 receptor antagonist treatment in CRF2 KO mice also had no effect on FPS. These results support an additive model of CRF1 and CRF2 receptor activation effects on potentiated startle. These data also indicate that both CRF receptor subtypes contribute to contextual fear but are not required for discrete cued fear effects on startle reactivity. Thus, we suggest that either CRF1 or CRF2 could contribute to the increased startle observed in anxiety disorders with CRF system abnormalities.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Analysis of Variance
  • Animals
  • Conditioning, Psychological
  • Cues
  • Electroshock
  • Fear / physiology*
  • Female
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Pyrimidines / pharmacology
  • Receptors, Corticotropin-Releasing Hormone / antagonists & inhibitors
  • Receptors, Corticotropin-Releasing Hormone / genetics
  • Receptors, Corticotropin-Releasing Hormone / metabolism*
  • Reflex, Startle / physiology*

Substances

  • CRF receptor type 2
  • Pyrimidines
  • R 121919
  • Receptors, Corticotropin-Releasing Hormone
  • CRF receptor type 1