Modulation of major voltage- and ligand-gated ion channels in cultured neurons of the rat inferior colliculus by lidocaine

Acta Pharmacol Sin. 2008 Dec;29(12):1409-18. doi: 10.1111/j.1745-7254.2008.00893.x.

Abstract

Aim: The purpose of the present study was to explore how lidocaine as a therapeutic drug for tinnitus targets voltage- and ligand-gated ion channels and changes the excitability of central auditory neurons.

Methods: Membrane currents mediated by major voltage- and ligand-gated channels were recorded from primary cultured neurons of the inferior colliculus (IC) in rats with whole-cell patch-clamp techniques in the presence and absence of lidocaine. The effects of lidocaine on the current-evoked firing of action potentials were also examined.

Results: Lidocaine at 100 micromol/L significantly suppressed voltage-gated sodium currents, transient outward potassium currents, and the glycine-induced chloride currents to 87.66%+/-2.12%, 96.33%+/-0.35%, and 91.46%+/-2.69% of that of the control level, respectively. At 1 mmol/L, lidocaine further suppressed the 3 currents to 70.26%+/-4.69%, 62.80%+/-2.61%, and 89.11%+/-3.17% of that of the control level, respectively. However, lidocaine at concentrations lower than 1 mmol/L did not significantly affect GABA- or aspartate-induced currents. At a higher concentration (3 mmol/L), lidocaine slightly depressed the GABA-induced current to 87.70%+/-1.87% of that of the control level. Finally, lidocaine at 100 mumol/L was shown to significantly suppress the current-evoked firing of IC neurons to 58.62%+/-11.22% of that of the control level, indicating that lidocaine decreases neuronal excitability.

Conclusion: Although the action of lidocaine on the ion channels and receptors is complex and non-specific, it has an overall inhibitory effect on IC neurons at a clinically-relevant concentration, suggesting a central mechanism for lidocaine to suppress tinnitus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Action Potentials / physiology
  • Anesthetics, Local / pharmacology*
  • Animals
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Humans
  • Inferior Colliculi / cytology*
  • Inferior Colliculi / drug effects*
  • Inferior Colliculi / metabolism
  • Ion Channel Gating / drug effects
  • Ion Channels / metabolism*
  • Lidocaine / pharmacology*
  • Neurons* / drug effects
  • Neurons* / metabolism
  • Patch-Clamp Techniques
  • Rats
  • Rats, Wistar
  • gamma-Aminobutyric Acid / metabolism

Substances

  • Anesthetics, Local
  • Ion Channels
  • gamma-Aminobutyric Acid
  • Lidocaine