Formability of ABX3 (X = F, Cl, Br, I) halide perovskites

Acta Crystallogr B. 2008 Dec;64(Pt 6):702-7. doi: 10.1107/S0108768108032734. Epub 2008 Nov 14.


In this study a total of 186 complex halide systems were collected; the formabilities of ABX3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF2) without perovskite structure and six systems (RbF-PbF2, CsF-BeF2, KCl-FeCl2, TlI-MnI2, RbI-SnI2, TlI-PbI2) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure.