Heat-induced Electrical Signals Affect Cytoplasmic and Apoplastic pH as Well as Photosynthesis During Propagation Through the Maize Leaf

Plant Cell Environ. 2009 Apr;32(4):319-26. doi: 10.1111/j.1365-3040.2008.01922.x. Epub 2008 Nov 25.


Combining measurements of electric potential and pH with such of chlorophyll fluorescence and leaf gas exchange showed heat stimulation to evoke an electrical signal (propagation speed: 3-5 mm s(-1)) that travelled through the leaf while reducing the net CO(2) uptake rate and the photochemical quantum yield of both photosystems (PS). Two-dimensional imaging analysis of the chlorophyll fluorescence signal of PS II revealed that the yield reduction spread basipetally via the veins through the leaf at a speed of 1.6 +/- 0.3 mm s(-1) while the propagation speed in the intervein region was c. 50 times slower. Propagation of the signal through the veins was confirmed because PS I, which is present in the bundle sheath cells around the leaf vessels, was affected first. Hence, spreading of the signal along the veins represents a path with higher travelling speed than within the intervein region of the leaf lamina. Upon the electrical signal, cytoplasmic pH decreased transiently from 7.0 to 6.4, while apoplastic pH increased transiently from 4.5 to 5.2. Moreover, photochemical quantum yield of isolated chloroplasts was strongly affected by pH changes in the surrounding medium, indicating a putative direct influence of electrical signalling via changes of cytosolic pH on leaf photosynthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chlorophyll / metabolism
  • Chloroplasts / metabolism
  • Cytoplasm / metabolism
  • Electricity*
  • Fluorescence
  • Hot Temperature*
  • Hydrogen-Ion Concentration
  • Membrane Potentials
  • Photosynthesis*
  • Photosystem I Protein Complex / metabolism
  • Photosystem II Protein Complex / metabolism
  • Plant Leaves / metabolism*
  • Signal Transduction
  • Zea mays / metabolism*


  • Photosystem I Protein Complex
  • Photosystem II Protein Complex
  • Chlorophyll