Objective: MMP is a key enzyme in the degradation of extracellular matrices, and its expression plays important roles in inflammatory diseases. Cordycepin (3'-deoxyadenosine), a bioactive compound of Cordyceps militaris, has been shown to exhibit many pharmacological activities, such as anti-cancer, anti-inflammatory and anti-infection activities. In this study, we aimed at the inhibitory effect of cordycepin on IL-1beta-induced MMP-1 and MMP-3 expression as well as the molecular basis using RA synovial fibroblasts (RASFs).
Methods: RASFs were isolated from synovial tissue obtained from 12 patients with RA and cultured in monolayer. Expression of MMP-1 and MMP-3 was evaluated using western blotting and real-time PCR. Chemokines were analysed by ELISA. The phosphorylation of mitogen-activated protein kinase was measured by western blotting. Electrophoretic mobility shift assay was performed to evaluate binding activities of DNA to nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1).
Results: Cordycepin inhibited IL-1beta-induced MMP-1 and MMP-3 expressions in RASFs in a dose-dependent manner. Among various chemokines [such as monocyte chemoattractant protein-1 (MCP-1), GRO-alpha, regulated upon activation, normal T-cell expressed and presumably secreted (RANTES) and epithelial neutrophil activating peptide 78 (ENA-78)], cordycepin specifically blocked IL-1beta-induced ENA-78 production in RASF. Moreover, cordycepin significantly inhibited IL-1beta-induced p38/JNK and AP-1 activation, but not extracellular signal-regulated kinase (ERK) and NF-kappaB activation.
Conclusions: Cordycepin is a potent inhibitor of IL-1beta-induced chemokine production and MMP expression and strongly blocks the p38/JNK/AP-1 signalling pathway in RASFs.