Background: Lifestyle intervention can successfully induce weight loss in obese persons, at least temporarily. However, there currently is no way to quantitatively estimate the changes of diet or physical activity required to prevent weight regain. Such a tool would be helpful for goal-setting, because obese patients and their physicians could assess at the outset of an intervention whether long-term adherence to the calculated lifestyle change is realistic.
Objective: We aimed to calculate the expected change of steady-state body weight arising from a given change in dietary energy intake and, conversely, to calculate the modification of energy intake required to maintain a particular body-weight change.
Design: We developed a mathematical model using data from 8 longitudinal weight-loss studies representing 157 subjects with initial body weights ranging from 68 to 160 kg and stable weight losses between 7 and 54 kg.
Results: Model calculations closely matched the change data (R(2) = 0.83, chi(2) = 2.1, P < 0.01 for weight changes; R(2) = 0.91, chi(2) = 0.87, P < 0.0004 for energy intake changes). Our model performed significantly better than the previous models for which chi(2) values were 10-fold those of our model. The model also accurately predicted the proportion of weight change resulting from the loss of body fat (R(2) = 0.90).
Conclusions: Our model provides realistic calculations of body-weight change and of the dietary modifications required for weight-loss maintenance. Because the model was implemented by using standard spreadsheet software, it can be widely used by physicians and weight-management professionals.