Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of 4-Vinylbenzaldehyde

Macromolecules. 2007 Feb 20;40(4):793-795. doi: 10.1021/ma062592x.

Abstract

The direct reversible addition fragmentation chain transfer (RAFT) polymerization of 4-vinylbenzaldehyde (VBA) was established as a new synthetic method for the preparation of well-defined poly(vinylbenzaldehyde) (PVBA), a polymer having reactive aldehyde side chain substiuents. RAFT polymerization of VBA was investigated using S-1-dodecyl-S'-(α,α'-dimethyl-α"-acetic acid)trithiocarbonate (DDMAT) as chain transfer agent (CTA) and 2,2'-azobis(isobutyronitrile) (AIBN) as initiator in 1,4-dioxane or 2-butanone at 70-75 °C for 7.5-22.5 h. With 45-76% of monomer conversion, the resulting PVBA had well controlled number-average molecular weight (M(n)) and low polydispersity (PDI < 1.17). The living characteristic of the RAFT polymerization process was confirmed by the linearity between the M(n) values of PVBA and monomer conversions. Well-defined PVBA was further used as a macromolecular chain transfer agent (macro-CTA) in RAFT polymerization of styrene (St), and a block copolymer PVBA-b-PSt with relatively low polydispersity (PDI = 1.20) was successfully synthesized.