Dynamic networks of protein-protein interactions regulate numerous cellular processes and determine the ability of cells to respond appropriately to environmental stimuli. However, the study of protein complex formation in living plant cells has remained experimentally difficult and time-consuming and requires sophisticated technical equipment. In this report, we describe a bimolecular fluorescence complementation (BiFC) technique for visualization of protein-protein interactions in plant cells. This approach is based on the formation of a fluorescent complex by two non-fluorescent fragments of the yellow fluorescent protein (YFP) brought together by the association of interacting proteins fused to these fragments. We present the BiFC vectors currently available for the transient and stable transformation of plant cells and provide a detailed protocol for the successful use of BiFC in plants.