Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 9 Suppl 3 (Suppl 3), S4

Nanotechnology Approaches to Crossing the Blood-Brain Barrier and Drug Delivery to the CNS

Affiliations
Review

Nanotechnology Approaches to Crossing the Blood-Brain Barrier and Drug Delivery to the CNS

Gabriel A Silva. BMC Neurosci.

Abstract

Nanotechnologies are materials and devices that have a functional organization in at least one dimension on the nanometer (one billionth of a meter) scale, ranging from a few to about 100 nanometers. Nanoengineered materials and devices aimed at biologic applications and medicine in general, and neuroscience in particular, are designed fundamentally to interface and interact with cells and their tissues at the molecular level. One particularly important area of nanotechnology application to the central nervous system (CNS) is the development of technologies and approaches for delivering drugs and other small molecules such as genes, oligonucleotides, and contrast agents across the blood brain barrier (BBB). The BBB protects and isolates CNS structures (i.e. the brain and spinal cord) from the rest of the body, and creates a unique biochemical and immunological environment. Clinically, there are a number of scenarios where drugs or other small molecules need to gain access to the CNS following systemic administration, which necessitates being able to cross the BBB. Nanotechnologies can potentially be designed to carry out multiple specific functions at once or in a predefined sequence, an important requirement for the clinically successful delivery and use of drugs and other molecules to the CNS, and as such have a unique advantage over other complimentary technologies and methods. This brief review introduces emerging work in this area and summarizes a number of example applications to CNS cancers, gene therapy, and analgesia.

Similar articles

See all similar articles

Cited by 30 PubMed Central articles

See all "Cited by" articles

References

    1. Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe MJ, Couvreur P, Vassal G. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther. 2002;303:928–936. doi: 10.1124/jpet.102.039669. - DOI - PubMed
    1. Feng SS, Mu L, Win KY, Huang G. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr Med Chem. 2004;11:413–424. doi: 10.2174/0929867043455909. - DOI - PubMed
    1. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res. 1999;16:1564–1569. doi: 10.1023/A:1018983904537. - DOI - PubMed
    1. Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res. 1997;14:325–328. doi: 10.1023/A:1012098005098. - DOI - PubMed
    1. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles) Brain Res. 1995;674:171–174. doi: 10.1016/0006-8993(95)00023-J. - DOI - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources

Feedback