CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
- PMID: 19095942
- PMCID: PMC2695655
- DOI: 10.1126/science.1165771
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
Abstract
Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.
Figures
Similar articles
-
Self versus non-self discrimination during CRISPR RNA-directed immunity.Nature. 2010 Jan 28;463(7280):568-71. doi: 10.1038/nature08703. Epub 2010 Jan 13. Nature. 2010. PMID: 20072129 Free PMC article.
-
Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.J Bacteriol. 2016 Jan 11;198(6):941-50. doi: 10.1128/JB.00897-15. J Bacteriol. 2016. PMID: 26755632 Free PMC article.
-
Analysis of the features of 45 identified CRISPR loci in 32 Staphylococcus aureus.Biochem Biophys Res Commun. 2015 Aug 28;464(3):894-900. doi: 10.1016/j.bbrc.2015.07.062. Epub 2015 Jul 17. Biochem Biophys Res Commun. 2015. PMID: 26188514
-
CRISPR/Cas, the immune system of bacteria and archaea.Science. 2010 Jan 8;327(5962):167-70. doi: 10.1126/science.1179555. Science. 2010. PMID: 20056882 Review.
-
CRISPR-Cas systems and RNA-guided interference.Wiley Interdiscip Rev RNA. 2013 May-Jun;4(3):267-78. doi: 10.1002/wrna.1159. Epub 2013 Mar 20. Wiley Interdiscip Rev RNA. 2013. PMID: 23520078 Review.
Cited by
-
Harnessing CRISPR-Cas system diversity for gene editing technologies.J Biomed Res. 2021 Mar 26;35(2):91-106. doi: 10.7555/JBR.35.20200184. J Biomed Res. 2021. PMID: 33797415 Free PMC article.
-
Exploiting CRISPR/Cas: interference mechanisms and applications.Int J Mol Sci. 2013 Jul 12;14(7):14518-31. doi: 10.3390/ijms140714518. Int J Mol Sci. 2013. PMID: 23857052 Free PMC article. Review.
-
Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9.J Mol Cell Biol. 2015 Aug;7(4):284-98. doi: 10.1093/jmcb/mjv016. Epub 2015 Mar 10. J Mol Cell Biol. 2015. PMID: 25757625 Free PMC article.
-
Prime editing for precise and highly versatile genome manipulation.Nat Rev Genet. 2023 Mar;24(3):161-177. doi: 10.1038/s41576-022-00541-1. Epub 2022 Nov 7. Nat Rev Genet. 2023. PMID: 36344749 Free PMC article. Review.
-
Genetic determinants facilitating the evolution of resistance to carbapenem antibiotics.Elife. 2021 Apr 19;10:e67310. doi: 10.7554/eLife.67310. Elife. 2021. PMID: 33871353 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
