Brian: a simulator for spiking neural networks in python
- PMID: 19115011
- PMCID: PMC2605403
- DOI: 10.3389/neuro.11.005.2008
Brian: a simulator for spiking neural networks in python
Abstract
"Brian" is a new simulator for spiking neural networks, written in Python (http://brian. di.ens.fr). It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.
Keywords: Python; computational neuroscience; integrate and fire; neural networks; simulation; software; spiking neurons; teaching.
Figures
Similar articles
-
The brian simulator.Front Neurosci. 2009 Sep 15;3(2):192-7. doi: 10.3389/neuro.01.026.2009. eCollection 2009 Sep. Front Neurosci. 2009. PMID: 20011141 Free PMC article.
-
ANNarchy: a code generation approach to neural simulations on parallel hardware.Front Neuroinform. 2015 Jul 31;9:19. doi: 10.3389/fninf.2015.00019. eCollection 2015. Front Neuroinform. 2015. PMID: 26283957 Free PMC article.
-
Brian2CUDA: Flexible and Efficient Simulation of Spiking Neural Network Models on GPUs.Front Neuroinform. 2022 Oct 31;16:883700. doi: 10.3389/fninf.2022.883700. eCollection 2022. Front Neuroinform. 2022. PMID: 36387586 Free PMC article.
-
Simulation of networks of spiking neurons: a review of tools and strategies.J Comput Neurosci. 2007 Dec;23(3):349-98. doi: 10.1007/s10827-007-0038-6. Epub 2007 Jul 12. J Comput Neurosci. 2007. PMID: 17629781 Free PMC article. Review.
-
Code Generation in Computational Neuroscience: A Review of Tools and Techniques.Front Neuroinform. 2018 Nov 5;12:68. doi: 10.3389/fninf.2018.00068. eCollection 2018. Front Neuroinform. 2018. PMID: 30455637 Free PMC article. Review.
Cited by
-
Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.Front Neurosci. 2015 Jul 9;9:222. doi: 10.3389/fnins.2015.00222. eCollection 2015. Front Neurosci. 2015. PMID: 26217169 Free PMC article.
-
A Diffusive Homeostatic Signal Maintains Neural Heterogeneity and Responsiveness in Cortical Networks.PLoS Comput Biol. 2015 Jul 9;11(7):e1004389. doi: 10.1371/journal.pcbi.1004389. eCollection 2015 Jul. PLoS Comput Biol. 2015. PMID: 26158556 Free PMC article.
-
EvtSNN: Event-driven SNN simulator optimized by population and pre-filtering.Front Neurosci. 2022 Sep 29;16:944262. doi: 10.3389/fnins.2022.944262. eCollection 2022. Front Neurosci. 2022. PMID: 36248639 Free PMC article.
-
A circuit motif in the zebrafish hindbrain for a two alternative behavioral choice to turn left or right.Elife. 2016 Aug 9;5:e16808. doi: 10.7554/eLife.16808. Elife. 2016. PMID: 27502742 Free PMC article.
-
A neuromorphic spiking neural network detects epileptic high frequency oscillations in the scalp EEG.Sci Rep. 2022 Feb 2;12(1):1798. doi: 10.1038/s41598-022-05883-8. Sci Rep. 2022. PMID: 35110665 Free PMC article.
References
-
- Bower J. M., Beeman D. (1998). The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural Simulation System, 2nd edn., Springer-Verlag, New York
-
- Brette R., Rudolph M., Carnevale T., Hines M., Beeman D., Bower J. M., Diesmann M., Morrison A., Goodman P. H., Harris F. C., Zirpe M., Natschläger T., Pecevski D., Ermentrout B., Djurfeldt M., Lansner A., Rochel O., Vieville T., Muller E., Davison A. P., Boustani S. E., Destexhe A. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23, 349–39810.1007/s10827-007-0038-6 - DOI - PMC - PubMed
-
- Cannon R., Gewaltig M.-O., Gleeson P., Bhalla U., Cornelis H., Hines M., Howell F., Muller E., Stiles J., Wils S., Schutter E. D. (2007). Interoperability of neuroscience modeling software: current status and future directions. Neuroinformatics 5, 127–13810.1007/s12021-007-0004-5 - DOI - PMC - PubMed
-
- Carnevale N. T., Hines M. L. (2006). The NEURON Book. Cambridge University Press, Cambridge, UK
-
- Cummins G., Adams R., Newell T. (2008). Scientific computation through a GPU. In Proceedings of the Southeastcon 2008, an IEEE conference, Huntsville, AL, pp. 244–246 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4494293
LinkOut - more resources
Full Text Sources
Other Literature Sources
