Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels
- PMID: 19118198
- PMCID: PMC2613039
- DOI: 10.1073/pnas.0811615106
Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels
Abstract
G protein-activated inwardly rectifying K(+) (GIRK) channels regulate neuronal excitability by mediating inhibitory effects of G protein-coupled receptors for neurotransmitters and neuromodulators. Notwithstanding many studies reporting modulation of GIRK channel function, whether neuronal activity regulates GIRK channel trafficking remains an open question. Here we report that NMDA receptor activation in cultured dissociated hippocampal neurons elevates surface expression of the GIRK channel subunits GIRK1 and GIRK2 in the soma, dendrites, and dendritic spines within 15 min. This activity-induced increase in GIRK surface expression requires protein phosphatase-1-mediated dephosphorylation of a serine residue (Ser-9) preceding the GIRK2 Val-13/Leu-14 (VL) internalization motif, thereby promoting channel recycling. Because activation of GIRK channels hyperpolarizes neuronal membranes, the NMDA receptor-induced regulation of GIRK channel trafficking may represent a dynamic adjustment of neuronal excitability in response to inhibitory neurotransmitters and/or neuromodulators.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease.Nat Rev Neurosci. 2010 May;11(5):301-15. doi: 10.1038/nrn2834. Epub 2010 Apr 14. Nat Rev Neurosci. 2010. PMID: 20389305 Free PMC article. Review.
-
Prolonged seizure activity causes caspase dependent cleavage and dysfunction of G-protein activated inwardly rectifying potassium channels.Sci Rep. 2017 Sep 26;7(1):12313. doi: 10.1038/s41598-017-12508-y. Sci Rep. 2017. PMID: 28951616 Free PMC article.
-
G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation.Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):635-40. doi: 10.1073/pnas.0811685106. Epub 2008 Dec 31. Proc Natl Acad Sci U S A. 2009. PMID: 19118199 Free PMC article.
-
Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.J Biol Chem. 2017 Apr 14;292(15):6135-6147. doi: 10.1074/jbc.M116.753350. Epub 2017 Feb 17. J Biol Chem. 2017. PMID: 28213520 Free PMC article.
-
Structural Insights into GIRK Channel Function.Int Rev Neurobiol. 2015;123:117-60. doi: 10.1016/bs.irn.2015.05.014. Epub 2015 Jun 22. Int Rev Neurobiol. 2015. PMID: 26422984 Review.
Cited by
-
Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease.Nat Rev Neurosci. 2010 May;11(5):301-15. doi: 10.1038/nrn2834. Epub 2010 Apr 14. Nat Rev Neurosci. 2010. PMID: 20389305 Free PMC article. Review.
-
Gbeta5 recruits R7 RGS proteins to GIRK channels to regulate the timing of neuronal inhibitory signaling.Nat Neurosci. 2010 Jun;13(6):661-3. doi: 10.1038/nn.2549. Epub 2010 May 9. Nat Neurosci. 2010. PMID: 20453851 Free PMC article.
-
Alpha-actinin2 cytoskeletal protein is required for the functional membrane localization of a Ca2+-activated K+ channel (SK2 channel).Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18402-7. doi: 10.1073/pnas.0908207106. Epub 2009 Oct 8. Proc Natl Acad Sci U S A. 2009. PMID: 19815520 Free PMC article.
-
Role of GirK Channels in Long-Term Potentiation of Synaptic Inhibition in an In Vivo Mouse Model of Early Amyloid-β Pathology.Int J Mol Sci. 2019 Mar 7;20(5):1168. doi: 10.3390/ijms20051168. Int J Mol Sci. 2019. PMID: 30866445 Free PMC article.
-
Inhibitory plasticity dictates the sign of plasticity at excitatory synapses.J Neurosci. 2014 Jan 22;34(4):1083-93. doi: 10.1523/JNEUROSCI.4711-13.2014. J Neurosci. 2014. PMID: 24453301 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
