rec genes and homologous recombination proteins in Escherichia coli

Biochimie. 1991 Apr;73(4):523-32. doi: 10.1016/0300-9084(91)90124-j.


The twenty-five years since the first published report of recA mutants in Escherichia coli has seen the identification of more than 12 other recombination genes. The genes are usually grouped into three pathways named RecBCD, RecE and RecF for prominent genes which function in each. A proposal is made here that there are two RecF pathways, one sensitive and one resistant to exonuclease I, the SbcB enzyme. Five methods of grouping the genes functionally are discussed: 1) by enzyme activity, 2) by common indirect suppressor, 3) by common phenotype, 4) by common regulation and 5) by epistasis. Five classes of enzyme activities implicated in recombination are discussed according to their involvement in presynapsis, synapsis or postsynapsis: 1) nucleases 2) helicases 3) DNA-binding proteins 4) topoisomerases and 5) ligases. Plausible presynaptic steps for the RecBCD, RecF (SbcBS) and RecE pathways show the common feature of generating 3'-terminated single-stranded DNA (ssDNA). On this ssDNA it is proposed that a RecA protein filament is generated discontinuously. This implies the existence of nucleation and possibly measurement and 3' end protection proteins. Specific proposals are made for which recombination genes might encode such products. Finally the generality of the RecA-ssDNA-filament mechanism of synapsis in the cellular biological world is discussed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Escherichia coli / genetics*
  • Genes, Bacterial*
  • Rec A Recombinases / genetics*
  • Recombination, Genetic*
  • Sequence Homology, Nucleic Acid


  • Rec A Recombinases