Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae
- PMID: 19122999
- DOI: 10.1007/s00253-008-1823-5
Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae
Abstract
2,3-Butanediol is one of the promising bulk chemicals with wide applications. Its fermentative production has attracted great interest due to the high end concentration. However, large-scale production of 2,3-butanediol requires low-cost substrate and efficient fermentation process. In the present study, 2,3-butanediol production by Klebsiella pneumoniae from Jerusalem artichoke tubers was successfully performed, and various technologies, including separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF), were investigated. The concentration of target products reached 81.59 and 91.63 g/l, respectively after 40 h in batch and fed-batch SSF processes. Comparing with fed-batch SHF, the fed-batch SSF provided 30.3% higher concentration and 83.2% higher productivity of target products. The results showed that Jerusalem artichoke tuber is a favorable substrate for 2,3-butanediol production, and the application of fed-batch SSF for its conversion can result in a more cost-effective process.
Similar articles
-
A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae.Bioresour Technol. 2010 Nov;101(21):8342-7. doi: 10.1016/j.biortech.2010.06.041. Epub 2010 Jun 29. Bioresour Technol. 2010. PMID: 20591660
-
Research on the Solid State Fermentation of Jerusalem Artichoke Pomace for Producing R,R-2,3-Butanediol by Paenibacillus polymyxa ZJ-9.Appl Biochem Biotechnol. 2017 Jun;182(2):687-696. doi: 10.1007/s12010-016-2354-7. Epub 2016 Dec 10. Appl Biochem Biotechnol. 2017. PMID: 27943035
-
Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production.Bioengineered. 2016 Nov;7(6):432-438. doi: 10.1080/21655979.2016.1199304. Epub 2016 Jul 21. Bioengineered. 2016. PMID: 27442598 Free PMC article.
-
Strategies for efficient and economical 2,3-butanediol production: new trends in this field.World J Microbiol Biotechnol. 2016 Dec;32(12):200. doi: 10.1007/s11274-016-2161-x. Epub 2016 Oct 24. World J Microbiol Biotechnol. 2016. PMID: 27778222 Review.
-
Recent insights in the removal of Klebseilla pathogenicity factors for the industrial production of 2,3-butanediol.J Microbiol Biotechnol. 2013;23(7):885-96. doi: 10.4014/jmb.1302.02066. J Microbiol Biotechnol. 2013. PMID: 23727815 Review.
Cited by
-
Influence of pH on Inulin Conversion to 2,3-Butanediol by Bacillus licheniformis 24: A Gene Expression Assay.Int J Mol Sci. 2023 Sep 14;24(18):14065. doi: 10.3390/ijms241814065. Int J Mol Sci. 2023. PMID: 37762368 Free PMC article.
-
Carrot Discard as a Promising Feedstock to Produce 2,3-Butanediol by Fermentation with P. polymyxa DSM 365.Bioengineering (Basel). 2023 Aug 7;10(8):937. doi: 10.3390/bioengineering10080937. Bioengineering (Basel). 2023. PMID: 37627821 Free PMC article.
-
Microbial Succession and Interactions During the Manufacture of Fu Brick Tea.Front Microbiol. 2022 Jun 23;13:892437. doi: 10.3389/fmicb.2022.892437. eCollection 2022. Front Microbiol. 2022. PMID: 35814693 Free PMC article.
-
Metabolic Engineering of Bacillus amyloliquefaciens to Efficiently Synthesize L-Ornithine From Inulin.Front Bioeng Biotechnol. 2022 Jun 8;10:905110. doi: 10.3389/fbioe.2022.905110. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35757793 Free PMC article.
-
Effectively Converting Cane Molasses into 2,3-Butanediol Using Clostridiumljungdahlii by an Integrated Fermentation and Membrane Separation Process.Molecules. 2022 Jan 30;27(3):954. doi: 10.3390/molecules27030954. Molecules. 2022. PMID: 35164219 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
