Temperature has reciprocal effects on colanic acid and polysialic acid biosynthesis in E. coli K92

Appl Microbiol Biotechnol. 2009 Mar;82(4):721-9. doi: 10.1007/s00253-008-1840-4. Epub 2009 Jan 13.

Abstract

Escherichia coli K92 is an opportunistic pathogen bacterium able to produce polysialic acid (PA) capsules when grows at 37 degrees C. PA polysaccharides are cell-associated homopolymers tailored from acid sialic monomers that function as virulence factors in different neuroinvasive diseases caused by certain Enterobacteriaceae. Conversely, when grows at 19 degrees C (restrictive conditions), PA synthesis was negligible, whereas in such condition, a slimy substance started to be accumulated in the culture broths. Analysis by uronic acids colorimetric determinations, gas chromatography-mass spectrometry, and Fourier transform infrared spectroscopy allowed the isolation and identification of mucoid substance as colanic acid (CA). CA is a heteropolymer containing glucose, galactose, fucose, and glucuronic acid as monomers which seems to be involved in the protection of this bacterium against environment assaults. The study of physicochemical conditions required for CA synthesis revealed that in E. coli K92, nutrient (carbon and nitrogen sources) modulates CA production, reaching the maximal values when glucose and proline were as carbon and nitrogen sources, respectively. Furthermore, we have found that E. coli K92 is able to produce CA at all temperatures tested (from 42 degrees C to 15 degrees C), whereas PA synthesis only occurred when bacteria were cultured at temperatures higher than 25 degrees C. Additionally, genetic engineering approaches revealed that the CA cluster including several genes required for synthesis was placed into a DNA fragment of 100 kb using polymerase chain reaction methodology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli / chemistry
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Polysaccharides / analysis
  • Polysaccharides / biosynthesis*
  • Sialic Acids / analysis
  • Sialic Acids / biosynthesis*
  • Temperature

Substances

  • Polysaccharides
  • Sialic Acids
  • polysialic acid
  • colanic acid