Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis

Plant Cell Environ. 2009 Apr;32(4):349-67. doi: 10.1111/j.1365-3040.2008.01928.x.


In plants, the enzymes for cysteine synthesis serine acetyltransferase (SAT) and O-acetylserine-(thiol)-lyase (OASTL) are present in the cytosol, plastids and mitochondria. However, it is still not clearly resolved to what extent the different compartments are involved in cysteine biosynthesis and how compartmentation influences the regulation of this biosynthetic pathway. To address these questions, we analysed Arabidopsis thaliana T-DNA insertion mutants for cytosolic and plastidic SAT isoforms. In addition, the subcellular distribution of enzyme activities and metabolite concentrations implicated in cysteine and glutathione biosynthesis were revealed by non-aqueous fractionation (NAF). We demonstrate that cytosolic SERAT1.1 and plastidic SERAT2.1 do not contribute to cysteine biosynthesis to a major extent, but may function to overcome transport limitations of O-acetylserine (OAS) from mitochondria. Substantiated by predominantly cytosolic cysteine pools, considerable amounts of sulphide and presence of OAS in the cytosol, our results suggest that the cytosol is the principal site for cysteine biosynthesis. Subcellular metabolite analysis further indicated efficient transport of cysteine, gamma-glutamylcysteine and glutathione between the compartments. With respect to regulation of cysteine biosynthesis, estimation of subcellular OAS and sulphide concentrations established that OAS is limiting for cysteine biosynthesis and that SAT is mainly present bound in the cysteine-synthase complex.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / enzymology*
  • Arabidopsis / genetics
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Cysteine / biosynthesis*
  • Cysteine Synthase / metabolism
  • Cytosol / enzymology*
  • DNA, Bacterial / genetics
  • DNA, Plant / genetics
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Mutagenesis, Insertional
  • Mutation
  • Plastids / enzymology*
  • Serine O-Acetyltransferase / genetics
  • Serine O-Acetyltransferase / metabolism*


  • Arabidopsis Proteins
  • DNA, Bacterial
  • DNA, Plant
  • Isoenzymes
  • T-DNA
  • Serine O-Acetyltransferase
  • Cysteine Synthase
  • Cysteine