Estimating classification images with generalized linear and additive models

J Vis. 2008 Dec 22;8(16):10.1-19. doi: 10.1167/8.16.10.


Conventional approaches to modeling classification image data can be described in terms of a standard linear model (LM). We show how the problem can be characterized as a Generalized Linear Model (GLM) with a Bernoulli distribution. We demonstrate via simulation that this approach is more accurate in estimating the underlying template in the absence of internal noise. With increasing internal noise, however, the advantage of the GLM over the LM decreases and GLM is no more accurate than LM. We then introduce the Generalized Additive Model (GAM), an extension of GLM that can be used to estimate smooth classification images adaptively. We show that this approach is more robust to the presence of internal noise, and finally, we demonstrate that GAM is readily adapted to estimation of higher order (nonlinear) classification images and to testing their significance.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artifacts
  • Classification
  • Computer Simulation
  • Humans
  • Linear Models*
  • Nonlinear Dynamics
  • Signal Detection, Psychological*
  • Vision, Ocular / physiology*
  • Visual Perception / physiology*