Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Jan 21:10:36.
doi: 10.1186/1471-2164-10-36.

Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi

Affiliations
Free PMC article
Comparative Study

Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi

Kathryn E Holt et al. BMC Genomics. .
Free PMC article

Abstract

Background: Of the > 2000 serovars of Salmonella enterica subspecies I, most cause self-limiting gastrointestinal disease in a wide range of mammalian hosts. However, S. enterica serovars Typhi and Paratyphi A are restricted to the human host and cause the similar systemic diseases typhoid and paratyphoid fever. Genome sequence similarity between Paratyphi A and Typhi has been attributed to convergent evolution via relatively recent recombination of a quarter of their genomes. The accumulation of pseudogenes is a key feature of these and other host-adapted pathogens, and overlapping pseudogene complements are evident in Paratyphi A and Typhi.

Results: We report the 4.5 Mbp genome of a clinical isolate of Paratyphi A, strain AKU_12601, completely sequenced using capillary techniques and subsequently checked using Illumina/Solexa resequencing. Comparison with the published genome of Paratyphi A ATCC9150 revealed the two are collinear and highly similar, with 188 single nucleotide polymorphisms and 39 insertions/deletions. A comparative analysis of pseudogene complements of these and two finished Typhi genomes (CT18, Ty2) identified several pseudogenes that had been overlooked in prior genome annotations of one or both serovars, and identified 66 pseudogenes shared between serovars. By determining whether each shared and serovar-specific pseudogene had been recombined between Paratyphi A and Typhi, we found evidence that most pseudogenes have accumulated after the recombination between serovars. We also divided pseudogenes into relative-time groups: ancestral pseudogenes inherited from a common ancestor, pseudogenes recombined between serovars which likely arose between initial divergence and later recombination, serovar-specific pseudogenes arising after recombination but prior to the last evolutionary bottlenecks in each population, and more recent strain-specific pseudogenes.

Conclusion: Recombination and pseudogene-formation have been important mechanisms of genetic convergence between Paratyphi A and Typhi, with most pseudogenes arising independently after extensive recombination between the serovars. The recombination events, along with divergence of and within each serovar, provide a relative time scale for pseudogene-forming mutations, affording rare insights into the progression of functional gene loss associated with host adaptation in Salmonella.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Tandem repeats in the O-antigen biosynthesis cluster in Paratyphi A ATCC9150. Bottom row: gene arrangement in Paratyphi A AKU_12601 and Typhi, presumed to be the ancestral form. Top row: gene arrangement in Paratyphi A ATCC9150, apparently resulting from two tandem duplications. Labels give systematic identifiers for the gene sequences in each genome, identical coding sequences are shown in the same colours, identical sequences are joined by lines.
Figure 2
Figure 2
Scenarios of recombination and pseudogene formation in Paratyphi A and Typhi. (a) True distribution of pseudogenes in the Paratyphi A AKU_12601 and Typhi CT18 genomes (gene order based on gene co-ordinates in Typhi CT18). (b-c) Distribution of pseudogenes resulting from data simulated under two scenarios, under both of which 40 pseudogenes are inherited from the most recent common ancestor of Paratyphi A and Typhi, and extensive accumulation of pseudogenes occurs before or after recombination of 25% of genes. For ease of simulation, the recombination shown is uni-directional, but bi-directional exchange would result in similar patterns. (b) Scenario 1: 150 additional pseudogenes accumulate in each serovar, followed by recombination. (c) Scenario 2: only 20 additional pseudogenes arise before recombination, after which a further 150 pseudogenes accumulate in each serovar.
Figure 3
Figure 3
Pseudogene formation in the evolutionary histories of Paratyphi A and Typhi. Phylogenetic tree based on multiple alignments of all nonrecombined genes as defined in [15], rooted using S. bongori and E. coli as outgroups. Scale bar is nucleotide divergence. The timing of the recombination between Paratyphi A and Typhi is an approximation inferred from published divergence data [15]. Group (i) pseudogenes were inactivated prior to the divergence of Paratyphi A and Typhi, some are also inactivated in Typhimurium and Paratyphi B; following their divergence Paratyphi A and Typhi likely accumulated few additional pseudogenes; during the recombination of 23% of their genomes (direction of transfer unknown) 18 pseudogene sequences were shared between Paratyphi A and Typhi, including five non-ancestral pseudogenes (group ii); many pseudogenes were formed during a period of accelerated pseudogene accumulation in both serovars, including most group (iii) pseudogenes; pseudogenes continue to accumulate in individual sub-lineages after the most recent common ancestor of each serovar (group iv).

Similar articles

Cited by

References

    1. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med. 2002;347:1770–1782. doi: 10.1056/NEJMra020201. - DOI - PubMed
    1. Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. Bull World Health Organ. 2004;82:346–353. - PMC - PubMed
    1. Maskey AP, Basnyat B, Thwaites GE, Campbell JI, Farrar JJ, Zimmerman MD. Emerging trends in enteric fever in Nepal: 9124 cases confirmed by blood culture 1993–2003. Trans R Soc Trop Med Hyg. 2008;102:91–95. doi: 10.1016/j.trstmh.2007.10.003. - DOI - PubMed
    1. Woods CW, Murdoch DR, Zimmerman MD, Glover WA, Basnyat B, Wolf L, Belbase RH, Reller LB. Emergence of Salmonella enterica serotype Paratyphi A as a major cause of enteric fever in Kathmandu, Nepal. Trans R Soc Trop Med Hyg. 2006;100:1063–1067. doi: 10.1016/j.trstmh.2005.12.011. - DOI - PubMed
    1. Ochiai RL, Wang X, von Seidlein L, Yang J, Bhutta ZA, Bhattacharya SK, Agtini M, Deen JL, Wain J, Kim DR, Ali M, Acosta CJ, Jodar L, Clemens JD. Salmonella paratyphi A rates, Asia. Emerg Infect Dis. 2005;11:1764–1766. - PMC - PubMed

Publication types

LinkOut - more resources