Factors Influencing Lesion Detection in SPECT Lung Images

IEEE Nucl Sci Symp Conf Rec (1997). 2006:5:2662-2666. doi: 10.1109/NSSMIC.2006.356429.

Abstract

An earlier localization ROC (LROC) study that found attenuation correction (AC) degraded the detection of solitary pulmonary nodules (SPN) in hybrid SPECT lung images had several potential shortcomings related to the simulation methods. We sought to address these issues with a revised LROC study. Clinical Tc-99m NeoTect scans acquired with a simultaneous transmission-emission protocol defined the normal cases in a single-slice LROC study. Abnormal cases contained a simulated 1-cm lung lesion. Four rescaled-block-iterative EM (RBI) reconstruction strategies applied: 1) AC, scatter correction (SC), and resolution compensation (RC); 2) AC only; 3) RC only; and 4) no corrections (NC). Images from these strategies underwent 3D Gaussian post-smoothing. Performances were defined by the average area under the LROC curve obtained from three human observers. The strategy ranking in order of decreasing performance was: 1) RBI with RC; 2) RBI with all corrections; 3) RBI with AC; and 4) RBI with no corrections. A multireader-multicase (MRMC) analysis only found significant patient and patient-strategy effects. The conflicting results concerning AC from this study and the previous one may revolve around lesion masking effects, which, by design, were not a factor in the current study.