Prokaryotic genomes and diversity in surface ocean waters: interrogating the global ocean sampling metagenome
- PMID: 19201952
- PMCID: PMC2663191
- DOI: 10.1128/AEM.02118-08
Prokaryotic genomes and diversity in surface ocean waters: interrogating the global ocean sampling metagenome
Abstract
The Sorcerer II Global Ocean Sampling (GOS) sequencing effort has vastly expanded the landscape of metagenomics, providing an opportunity to study the genetic potential of surface ocean water bacterioplankton on a global scale. Here we describe the habitat-based microbial diversity, both taxon evenness and taxon richness, for each GOS site and estimate genome characteristics of a typical free-living, surface ocean water bacterium. While Alphaproteobacteria and particularly SAR11 dominate the 0.1- to 0.8-mum size fraction of surface ocean water bacteria (43% and 31%, respectively), the proportions of other taxa varied with ocean habitat type. Within each habitat type, lower-bound estimates of phylum richness ranged between 18 and 59 operational taxonomic units (OTUs). However, OTU richness was relatively low in the hypersaline lagoon community at every taxonomic level, and open-ocean communities had much more microdiversity than any other habitat. Based on the abundance of single-copy eubacterial genes from the same data set, we estimate that the genome of an average free-living surface ocean water bacterium (sized between 0.1 and 0.8 mum) contains approximately 1,019 genes and 1.8 copies of the 16S rRNA gene, suggesting that these bacteria have relatively streamlined genomes in comparison to those of cultured bacteria and bacteria from other habitats (e.g., soil or acid mine drainage).
Figures
Similar articles
-
Hydrography shapes bacterial biogeography of the deep Arctic Ocean.ISME J. 2010 Apr;4(4):564-76. doi: 10.1038/ismej.2009.134. Epub 2009 Dec 10. ISME J. 2010. PMID: 20010630
-
Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.Syst Appl Microbiol. 2010 Apr;33(3):128-38. doi: 10.1016/j.syapm.2009.12.006. Epub 2010 Mar 15. Syst Appl Microbiol. 2010. PMID: 20227843
-
Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing.Mol Ecol. 2011 Jan;20(2):258-74. doi: 10.1111/j.1365-294X.2010.04932.x. Epub 2010 Dec 9. Mol Ecol. 2011. PMID: 21143328 Free PMC article.
-
Prokaryotic Life in the Deep Ocean's Water Column.Ann Rev Mar Sci. 2023 Jan 16;15:461-483. doi: 10.1146/annurev-marine-032122-115655. Epub 2022 Jul 14. Ann Rev Mar Sci. 2023. PMID: 35834811 Review.
-
The Landscape of Global Ocean Microbiome: From Bacterioplankton to Biofilms.Int J Mol Sci. 2023 Mar 30;24(7):6491. doi: 10.3390/ijms24076491. Int J Mol Sci. 2023. PMID: 37047466 Free PMC article. Review.
Cited by
-
Increased prokaryotic diversity in the Red Sea deep scattering layer.Environ Microbiome. 2023 Dec 14;18(1):87. doi: 10.1186/s40793-023-00542-5. Environ Microbiome. 2023. PMID: 38098078 Free PMC article.
-
Microbial community structural response to variations in physicochemical features of different aquifers.Front Microbiol. 2023 Feb 9;14:1025964. doi: 10.3389/fmicb.2023.1025964. eCollection 2023. Front Microbiol. 2023. PMID: 36865779 Free PMC article.
-
Trait-trait relationships and tradeoffs vary with genome size in prokaryotes.Front Microbiol. 2022 Oct 21;13:985216. doi: 10.3389/fmicb.2022.985216. eCollection 2022. Front Microbiol. 2022. PMID: 36338105 Free PMC article.
-
Differentiated Evolutionary Strategies of Genetic Diversification in Atlantic and Pacific Thaumarchaeal Populations.mSystems. 2022 Jun 28;7(3):e0147721. doi: 10.1128/msystems.01477-21. Epub 2022 Jun 13. mSystems. 2022. PMID: 35695431 Free PMC article.
-
Heterotrophic Bacterioplankton Growth and Physiological Properties in Red Sea Tropical Shallow Ecosystems With Different Dissolved Organic Matter Sources.Front Microbiol. 2022 Jan 3;12:784325. doi: 10.3389/fmicb.2021.784325. eCollection 2021. Front Microbiol. 2022. PMID: 35046913 Free PMC article.
References
-
- Acinas, S. G., V. Klepac-Ceraj, D. E. Hunt, C. Pharino, I. Ceraj, D. L. Distel, and M. F. Polz. 2004. Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430:551-554. - PubMed
-
- Beja, O., L. Aravind, E. V. Koonin, M. T. Suzuki, A. Hadd, L. P. Nguyen, S. Jovanovich, C. M. Gates, R. A. Feldman, J. L. Spudich, E. N. Spudich, and E. F. DeLong. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902-1906. - PubMed
-
- Beja, O., M. T. Suzuki, E. V. Koonin, L. Aravind, A. Hadd, L. P. Nguyen, R. Villacorta, M. Amjadi, C. Garrigues, S. B. Jovanovich, R. A. Feldman, and E. F. DeLong. 2000. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2:516-529. - PubMed
-
- Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11:265-270.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
