Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array

Appl Environ Microbiol. 2009 Apr;75(7):1932-7. doi: 10.1128/AEM.01892-08. Epub 2009 Feb 6.

Abstract

This study demonstrates the susceptibility of a variety of medically important bacteria to inactivation by 405-nm light from an array of light-emitting diodes (LEDs), without the application of exogenous photosensitizer molecules. Selected bacterial pathogens, all commonly associated with hospital-acquired infections, were exposed to the 405-nm LED array, and the results show that both gram-positive and gram-negative species were successfully inactivated, with the general trend showing gram-positive species to be more susceptible than gram-negative bacteria. Detailed investigation of the bactericidal effect of the blue-light treatment on Staphylococcus aureus suspensions, for a range of different population densities, demonstrated that 405-nm LED array illumination can cause complete inactivation at high population densities: inactivation levels corresponding to a 9-log(10) reduction were achieved. The results, which show the inactivation of a wide range of medically important bacteria including methicillin-resistant Staphylococcus aureus, demonstrate that, with further development, narrow-spectrum 405-nm visible-light illumination from an LED source has the potential to provide a novel decontamination method with a wide range of potential applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cross Infection / microbiology
  • Disinfection / methods*
  • Gram-Negative Bacteria / radiation effects*
  • Gram-Positive Bacteria / radiation effects*
  • Light*
  • Microbial Viability*