We present arguments and evidence for a three-state attentional model of task engagement/disengagement. The model postulates three states of mind-wandering: occurrent task inattention, generic task inattention, and response disengagement. We hypothesize that all three states are both causes and consequences of task performance outcomes and apply across a variety of experimental and real-world tasks. We apply this model to the analysis of a widely used GO/NOGO task, the Sustained Attention to Response Task (SART). We identify three performance characteristics of the SART that map onto the three states of the model: RT variability, anticipations, and omissions. Predictions based on the model are tested, and largely corroborated, via regression and lag-sequential analyses of both successful and unsuccessful withholding on NOGO trials as well as self-reported mind-wandering and everyday cognitive errors. The results revealed theoretically consistent temporal associations among the state indicators and between these and SART errors as well as with self-report measures. Lag analysis was consistent with the hypotheses that temporal transitions among states are often extremely abrupt and that the association between mind-wandering and performance is bidirectional. The bidirectional effects suggest that errors constitute important occasions for reactive mind-wandering. The model also enables concrete phenomenological, behavioral, and physiological predictions for future research.