Frequency-dependent signal transmission and modulation by neuromodulators

Front Neurosci. 2008 Dec 15;2(2):138-44. doi: 10.3389/neuro.01.027.2008. eCollection 2008 Dec.

Abstract

The brain uses a strategy of labor division, which may allow it to accomplish more elaborate and complicated tasks, but in turn, imposes a requirement for central control to integrate information among different brain areas. Anatomically, the divergence of long-range neuromodulator projections appears well-suited to coordinate communication between brain areas. Oscillatory brain activity is a prominent feature of neural transmission. Thus, the ability of neuromodulators to modulate signal transmission in a frequency-dependent manner adds an additional level of regulation. Here, we review the significance of frequency-dependent signal modulation in brain function and how a neuronal network can possess such properties. We also describe how a neuromodulator, dopamine, changes frequency-dependent signal transmission, controlling information flow from the entorhinal cortex to the hippocampus.

Keywords: CA1; dopamine; frequency-dependent modulation; neuromodulator; oscillation.