Multiple Introductions of the Spiroplasma Bacterial Endosymbiont Into Drosophila

Mol Ecol. 2009 Mar;18(6):1294-305. doi: 10.1111/j.1365-294X.2009.04085.x. Epub 2009 Feb 17.

Abstract

Bacterial endosymbionts are common in insects and can have dramatic effects on their host's evolution. So far, the only heritable symbionts found in Drosophila have been Wolbachia and Spiroplasma. While the incidence and effects of Wolbachia have been studied extensively, the prevalence and significance of Spiroplasma infections in Drosophila are less clear. These small, gram-positive, helical bacteria infect a diverse array of plant and arthropod hosts, conferring a variety of fitness effects. Male-killing Spiroplasma are known from certain Drosophila species; however, in others, Spiroplasma appear not to affect sex ratio. Previous studies have identified different Spiroplasma haplotypes in Drosophila populations, although no extensive surveys have yet been reported. We used a multilocus sequence analysis to reconstruct a robust Spiroplasma endosymbiont phylogeny, assess genetic diversity, and look for evidence of recombination. Six loci were sequenced from over 65 Spiroplasma-infected individuals from nine different Drosophila species. Analysis of these sequences reveals at least five separate introductions of four phylogenetically distinct Spiroplasma haplotypes, indicating that more extensive sampling will likely reveal an even greater Spiroplasma endosymbiont diversity. Patterns of variation in Drosophila mitochondrial haplotypes in Spiroplasma-infected and uninfected flies imply imperfect vertical transmission in host populations and possible horizontal transmission.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacterial Typing Techniques
  • Bayes Theorem
  • Biological Evolution*
  • DNA, Bacterial / genetics
  • DNA, Mitochondrial / genetics
  • Drosophila / genetics
  • Drosophila / microbiology*
  • Genetic Variation
  • Genetics, Population
  • Haplotypes
  • Mitochondria / genetics
  • Phylogeny*
  • Sequence Alignment
  • Sequence Analysis, DNA
  • Spiroplasma / classification
  • Spiroplasma / genetics*
  • Symbiosis*

Substances

  • DNA, Bacterial
  • DNA, Mitochondrial