Preliminary evaluation of antimicrobial activity of some chemicals on in vitro apple shoots infected by 'Candidatus Phytoplasma mali'

Commun Agric Appl Biol Sci. 2008;73(2):335-41.

Abstract

Phytoplasmas are associated with several hundred plant diseases worldwide, including numerous ones with important economical impact. Control of epidemic outbreak of phytoplasma diseases can be theoretically carried out by antibiotics. However, they are expensive, not allowed or prohibited in several countries, and even not always efficient. Presently, effective but safe antimicrobial agents are needed to control severe phytoplasma diseases in field. The aim of the present study was to evaluate the susceptibility of 'Candidatus Phytoplasma mali' to several chemical or synthetic antimicrobial agents. We tested nisin, esculetin, pyrithione and chloramphenicol as molecules having different target activities against micro-organisms. Because of their antimicrobial properties against fungi and bacteria, 4 phyto-essential oils (carvacrol, eugenol, terpineol, alpha-pinene) had also been tested. The activity of these molecules was compared with two antibiotics (tetracycline and enrofloxacin) used as control products. All these compounds were tested in in vitro culture of apples (MM106) infected by 'Ca. P. mall'. All compounds were added to the proliferation medium (modified MS) after autoclaving at 3 concentrations (100, 500, 1,000 ppm), except nisin and pyrithione which were tested at 10, 100 and 500 ppm. Phytoplasma infection was quantified in plant materials by real-time PCR before their transfer and after one or two months of culture in the presence of antimicrobial agents. Primary results showed that phytoplasma were not detectable after one and two months in the presence of pyrithione (at 10 and 100 ppm). Moreover, some other products reduced the concentration of phytoplasma after two months. Shoots died or withered on media enriched with essential oils; that made them impossible to assess, especially when they were used at concentration of 500 and 1,000 ppm.

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Colony Count, Microbial
  • Dose-Response Relationship, Drug
  • Malus / microbiology*
  • Microbial Sensitivity Tests
  • Phytoplasma / drug effects*
  • Plant Diseases / microbiology*
  • Tissue Culture Techniques

Substances

  • Anti-Bacterial Agents