A quantitative portrait of three xylanase inhibiting protein families in different wheat cultivars using 2D-DIGE and multivariate statistical tools

J Proteomics. 2009 Apr 13;72(3):484-500. doi: 10.1016/j.jprot.2009.02.003. Epub 2009 Feb 24.

Abstract

Wheat grains contain three classes of xylanase inhibitors (XIs), i.e. TAXI (Triticum aestivum xylanase inhibitor), XIP (xylanase inhibiting protein) and TLXI (thaumatin-like xylanase inhibitor). These proteins are involved in plant defence and strongly affect cereal-based processes in which inhibitor-sensitive xylanases are used. This paper reports on the successful use of 2D-DIGE and tandem MS to discriminate XI (iso)forms and measures their qualitative and quantitative variation in six different wheat cultivars. In total, 18 TAXI-, 27 XIP- and 3 TLXI-type XI spots were identified. The multiple members of the large TAXI-gene family make a considerable contribution to the total TAXI population. For XIP-type XIs, XIP-I is expressed as the predominant form, albeit under variable degrees of PTMs. Only one TLXI genetic variant was identified, showing different degrees of glycosylation. Multiple comparison analysis revealed up to 5-fold intercultivar differences in protein level of XI (iso)forms. Evaluation of abundance patterns using multivariate statistical tools revealed highly distinctive as well as correlated levels of different XI forms among the six cultivars. As the constitutive (and induced) levels of the different XI (iso)forms, which are differentially regulated in response to various forms of stress in other wheat plant parts, considerably vary between the cultivars, it can be assumed that their degree of resistance against pathogenic attack differs. Similarities in abundance profiles between XI (iso)forms and pathogenesis-related chitinases are also in line with a role in plant defence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crops, Agricultural / enzymology*
  • Databases, Protein
  • Electrophoresis, Gel, Two-Dimensional
  • Phylogeny
  • Plant Proteins / chemistry
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Polymorphism, Genetic
  • Seeds / metabolism
  • Triticum / chemistry
  • Triticum / genetics
  • Triticum / metabolism*
  • Xylosidases / antagonists & inhibitors*
  • Xylosidases / metabolism

Substances

  • Plant Proteins
  • Xylosidases