Balanced amplification: a new mechanism of selective amplification of neural activity patterns
- PMID: 19249282
- PMCID: PMC2667957
- DOI: 10.1016/j.neuron.2009.02.005
Balanced amplification: a new mechanism of selective amplification of neural activity patterns
Erratum in
- Neuron. 2016 Jan 6;89(1):235
Abstract
In cerebral cortex, ongoing activity absent a stimulus can resemble stimulus-driven activity in size and structure. In particular, spontaneous activity in cat primary visual cortex (V1) has structure significantly correlated with evoked responses to oriented stimuli. This suggests that, from unstructured input, cortical circuits selectively amplify specific activity patterns. Current understanding of selective amplification involves elongation of a neural assembly's lifetime by mutual excitation among its neurons. We introduce a new mechanism for selective amplification without elongation of lifetime: "balanced amplification." Strong balanced amplification arises when feedback inhibition stabilizes strong recurrent excitation, a pattern likely to be typical of cortex. Thus, balanced amplification should ubiquitously contribute to cortical activity. Balanced amplification depends on the fact that individual neurons project only excitatory or only inhibitory synapses. This leads to a hidden feedforward connectivity between activity patterns. We show in a detailed biophysical model that this can explain the cat V1 observations.
Figures
Comment in
-
Feedforward to the past: the relation between neuronal connectivity, amplification, and short-term memory.Neuron. 2009 Feb 26;61(4):499-501. doi: 10.1016/j.neuron.2009.02.006. Neuron. 2009. PMID: 19249270
Similar articles
-
Recurrent excitation in neocortical circuits.Science. 1995 Aug 18;269(5226):981-5. doi: 10.1126/science.7638624. Science. 1995. PMID: 7638624
-
Differential depression of inhibitory synaptic responses in feedforward and feedback circuits between different areas of mouse visual cortex.J Comp Neurol. 2004 Jul 26;475(3):361-73. doi: 10.1002/cne.20164. J Comp Neurol. 2004. PMID: 15221951
-
Asymmetric synaptic depression in cortical networks.Cereb Cortex. 2008 Apr;18(4):771-88. doi: 10.1093/cercor/bhm119. Epub 2007 Aug 9. Cereb Cortex. 2008. PMID: 17693394
-
Understanding layer 4 of the cortical circuit: a model based on cat V1.Cereb Cortex. 2003 Jan;13(1):73-82. doi: 10.1093/cercor/13.1.73. Cereb Cortex. 2003. PMID: 12466218 Review.
-
Bottom-up and top-down dynamics in visual cortex.Prog Brain Res. 2005;149:65-81. doi: 10.1016/S0079-6123(05)49006-8. Prog Brain Res. 2005. PMID: 16226577 Review.
Cited by
-
Dynamical mechanisms of how an RNN keeps a beat, uncovered with a low-dimensional reduced model.Sci Rep. 2024 Nov 2;14(1):26388. doi: 10.1038/s41598-024-77849-x. Sci Rep. 2024. PMID: 39488649 Free PMC article.
-
A spontaneous state of weakly correlated synaptic excitation and inhibition in visual cortex.Neuroscience. 2013 Sep 5;247:364-75. doi: 10.1016/j.neuroscience.2013.05.037. Epub 2013 May 31. Neuroscience. 2013. PMID: 23727451 Free PMC article.
-
Rational inattention in neural coding for economic choice.bioRxiv [Preprint]. 2024 Sep 23:2024.09.20.614193. doi: 10.1101/2024.09.20.614193. bioRxiv. 2024. PMID: 39386501 Free PMC article. Preprint.
-
Primate neocortex performs balanced sensory amplification.Neuron. 2024 Feb 21;112(4):661-675.e7. doi: 10.1016/j.neuron.2023.11.005. Epub 2023 Dec 12. Neuron. 2024. PMID: 38091984
-
α4β2∗ nicotinic receptors stimulate GABA release onto fast-spiking cells in layer V of mouse prefrontal (Fr2) cortex.Neuroscience. 2017 Jan 6;340:48-61. doi: 10.1016/j.neuroscience.2016.10.045. Epub 2016 Oct 26. Neuroscience. 2017. PMID: 27793780 Free PMC article.
References
-
- Anderson JS, Carandini M, Ferster D. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J Neurophysiol. 2000a;84:909–926. - PubMed
-
- Anderson JS, Lampl I, Gillespie D, Ferster D. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science. 2000b;290:1968–1972. - PubMed
-
- Arieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science. 1996;273:1868–1871. - PubMed
-
- Berger T, Borgdorff A, Crochet S, Neubauer F, Lefort S, Fauvet B, Ferezou I, Carleton A, Lscher H, Petersen C. Combined voltage and calcium epifiuorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. J Neurophysiol. 2007;97:3751–3762. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
