Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge

Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4343-8. doi: 10.1073/pnas.0813411106. Epub 2009 Feb 26.

Abstract

Francisella tularensis (Ft), a gram-negative intracellular bacterium, is the etiologic agent of tularemia. Infection of mice with <10 Ft Live Vaccine Strain (Ft LVS) organisms i.p. causes a lethal infection that resembles human tularemia. Here, we show that immunization with as little as 0.1 ng Ft LVS lipopolysaccharide (Ft-LPS), but not Ft lipid A, generates a rapid antibody response that protects wild-type (WT) mice against lethal Ft LVS challenge. Protection is not induced in Ft-LPS-immunized B cell-deficient mice (muMT or JhD), male xid mice, or Ig transgenic mice that produce a single IgH (not reactive with Ft-LPS). Focusing on the cellular mechanisms that underlie this protective response, we show that Ft-LPS specifically stimulates proliferation of B-1a lymphocytes that bind fluorochrome-labeled Ft-LPS and the differentiation of these cells to plasma cells that secrete antibodies specific for Ft-LPS. This exclusively B-1a antibody response is equivalent in WT, T-deficient (TCRalphabeta(-/-), TCRgammadelta(-/-)), and Toll-like receptor 4 (TLR4)-deficient (TLR4(-/-)) mice and thus is not dependent on T cells or typical inflammatory processes. Serum antibody levels peak approximately 5 days after Ft-LPS immunization and persist at low levels for months. Thus, immunization with Ft-LPS activates a rare population of antigen-specific B-1a cells to produce a persistent T-independent antibody response that provides long-term protection against lethal Ft LVS infection. These data support the possibility of creating effective, minimally invasive vaccines that can provide effective protection against pathogen invasion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antibodies, Bacterial
  • Antibody Formation*
  • Antigens, Bacterial
  • B-Lymphocytes / immunology
  • Bacterial Vaccines / administration & dosage
  • Bacterial Vaccines / immunology*
  • Bacterial Vaccines / therapeutic use
  • Francisella tularensis / immunology*
  • Lipopolysaccharides / immunology
  • Lymphocyte Activation
  • Mice
  • Mice, Knockout
  • Tularemia / prevention & control*

Substances

  • Antibodies, Bacterial
  • Antigens, Bacterial
  • Bacterial Vaccines
  • Lipopolysaccharides