Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation
- PMID: 19254571
- PMCID: PMC2684673
- DOI: 10.1016/j.cmet.2009.01.012
Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation
Abstract
Mitochondria constantly respond to changes in substrate availability and energy utilization to maintain cellular ATP supplies, and at the same time control reactive oxygen radical (ROS) production. Reversible phosphorylation of mitochondrial proteins has been proposed to play a fundamental role in metabolic homeostasis, but very little is known about the signaling pathways involved. We show here that protein kinase A (PKA) regulates ATP production by phosphorylation of mitochondrial proteins, including subunits of cytochrome c oxidase. The cyclic AMP (cAMP), which activates mitochondrial PKA, does not originate from cytoplasmic sources but is generated within mitochondria by the carbon dioxide/bicarbonate-regulated soluble adenylyl cyclase (sAC) in response to metabolically generated carbon dioxide. We demonstrate for the first time the existence of a CO(2)-HCO(3)(-)-sAC-cAMP-PKA (mito-sAC) signaling cascade wholly contained within mitochondria, which serves as a metabolic sensor modulating ATP generation and ROS production in response to nutrient availability.
Figures
Similar articles
-
Soluble adenylyl cyclase-mediated cAMP signaling and the putative role of PKA and EPAC in cerebral mitochondrial function.J Neurosci Res. 2019 Aug;97(8):1018-1038. doi: 10.1002/jnr.24477. Epub 2019 Jun 6. J Neurosci Res. 2019. PMID: 31172581
-
Oxidant activated soluble adenylate cyclase of Leishmania donovani regulates the cAMP-PKA signaling axis for its intra-macrophage survival during infection.J Cell Biochem. 2021 Oct;122(10):1413-1427. doi: 10.1002/jcb.30018. Epub 2021 Jun 8. J Cell Biochem. 2021. PMID: 34101889
-
Role of soluble adenylyl cyclase in mitochondria.Biochim Biophys Acta. 2014 Dec;1842(12 Pt B):2555-60. doi: 10.1016/j.bbadis.2014.05.035. Epub 2014 Jun 5. Biochim Biophys Acta. 2014. PMID: 24907564 Free PMC article. Review.
-
A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity.FASEB J. 2014 Oct;28(10):4369-80. doi: 10.1096/fj.14-252890. Epub 2014 Jul 1. FASEB J. 2014. PMID: 25002117 Free PMC article.
-
CO(2)/HCO(3)(-)-responsive soluble adenylyl cyclase as a putative metabolic sensor.Trends Endocrinol Metab. 2001 Oct;12(8):366-70. doi: 10.1016/s1043-2760(01)00454-4. Trends Endocrinol Metab. 2001. PMID: 11551811 Review.
Cited by
-
Ca2+ and cAMP cross-talk in mitochondria.J Physiol. 2014 Jan 15;592(2):305-12. doi: 10.1113/jphysiol.2013.259135. Epub 2013 Jul 15. J Physiol. 2014. PMID: 23858012 Free PMC article. Review.
-
Piezo1 stimulates mitochondrial function via cAMP signaling.FASEB J. 2022 Oct;36(10):e22519. doi: 10.1096/fj.202200300R. FASEB J. 2022. PMID: 36052712 Free PMC article.
-
Cyclic AMP Mimics the Anti-ageing Effects of Calorie Restriction by Up-Regulating Sirtuin.Sci Rep. 2015 Jul 8;5:12012. doi: 10.1038/srep12012. Sci Rep. 2015. PMID: 26153625 Free PMC article.
-
Mitochondrial dysfunction in heart failure.Heart Fail Rev. 2013 Sep;18(5):607-22. doi: 10.1007/s10741-012-9340-0. Heart Fail Rev. 2013. PMID: 22948484 Free PMC article. Review.
-
Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning.Adv Drug Deliv Rev. 2009 Nov 30;61(14):1324-31. doi: 10.1016/j.addr.2009.05.008. Epub 2009 Aug 26. Adv Drug Deliv Rev. 2009. PMID: 19716389 Free PMC article. Review.
References
-
- Akerman KE, Wikstrom MK. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976;68:191–197. - PubMed
-
- Bender E, Kadenbach B. The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett. 2000;466:130–134. - PubMed
-
- Birch-Machin MA, Turnbull DM. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. Methods Cell Biol. 2001;65:97–117. - PubMed
-
- Bornfeldt KE. A single second messenger: several possible cellular responses depending on distinct subcellular pools. Circ Res. 2006;99:790–792. - PubMed
-
- Bruce JI, Shuttleworth TJ, Giovannucci DR, Yule DI. Phosphorylation of inositol 1,4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca2+ signaling. J Biol Chem. 2002;277:1340–1348. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 HD038722/HD/NICHD NIH HHS/United States
- K02 NS047306-04/NS/NINDS NIH HHS/United States
- R01 NS055255/NS/NINDS NIH HHS/United States
- R01 HD059913/HD/NICHD NIH HHS/United States
- R01 GM062328-07/GM/NIGMS NIH HHS/United States
- R01 GM062328-06/GM/NIGMS NIH HHS/United States
- K02 NS047306/NS/NINDS NIH HHS/United States
- K02 NS047306-03/NS/NINDS NIH HHS/United States
- R01 AI064842/AI/NIAID NIH HHS/United States
- R01 GM062328/GM/NIGMS NIH HHS/United States
- R01 AI064842-04/AI/NIAID NIH HHS/United States
- R01 NS055255-03/NS/NINDS NIH HHS/United States
- K02 NS047306-01A1/NS/NINDS NIH HHS/United States
- T32 GM007739/GM/NIGMS NIH HHS/United States
- K02 NS047306-02/NS/NINDS NIH HHS/United States
- K02 NS047306-05/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
