Miniature anvil cell for high-pressure measurements in a commercial superconducting quantum interference device magnetometer

Rev Sci Instrum. 2009 Feb;80(2):023906. doi: 10.1063/1.3077303.

Abstract

We describe a miniature diamond anvil cell that can be used in a commercial superconducting quantum interference device (SQUID) magnetometer to detect magnetic and superconducting transitions at applied pressures above 100 kbar. The cell is of simple design but constructed out of ultralow susceptibility materials that allow us to detect changes in the magnetic moment of the specimen at the full sensitivity of the SQUID magnetometer (typically 10(-7) emu). We present examples of the use of the cell to detect ferromagnetic, antiferromagnetic, and superconducting transitions at pressures and temperatures in the range of 0<or=P<or=100 kbar, 1.8 K<or=T<or=290 K, respectively.