Gene regulatory logic of dopamine neuron differentiation
- PMID: 19287374
- PMCID: PMC2671564
- DOI: 10.1038/nature07929
Gene regulatory logic of dopamine neuron differentiation
Abstract
Dopamine signalling regulates a variety of complex behaviours, and defects in dopamine neuron function or survival result in severe human pathologies, such as Parkinson's disease. The common denominator of all dopamine neurons is the expression of dopamine pathway genes, which code for a set of phylogenetically conserved proteins involved in dopamine synthesis and transport. Gene regulatory mechanisms that result in the direct activation of dopamine pathway genes and thereby ultimately determine the identity of dopamine neurons are poorly understood in all systems studied so far. Here we show that a simple cis-regulatory element, the dopamine (DA) motif, controls the expression of all dopamine pathway genes in all dopaminergic cell types in Caenorhabditis elegans. The DA motif is activated by the ETS transcription factor AST-1. Loss of ast-1 results in the failure of all distinct dopaminergic neuronal subtypes to terminally differentiate. Ectopic expression of ast-1 is sufficient to activate the dopamine pathway in some cellular contexts. Vertebrate dopamine pathway genes also contain phylogenetically conserved DA motifs that can be activated by the mouse ETS transcription factor Etv1 (also known as ER81), and a specific class of dopamine neurons fails to differentiate in mice lacking Etv1. Moreover, ectopic Etv1 expression induces dopaminergic fate marker expression in neuronal primary cultures. Mouse Etv1 can also functionally substitute for ast-1 in C. elegans. Our studies reveal a simple and apparently conserved regulatory logic of dopamine neuron terminal differentiation and may provide new entry points into the diagnosis or therapy of conditions in which dopamine neurons are defective.
Figures
Comment in
-
Neuroscience: A bar code for differentiation.Nature. 2009 Apr 16;458(7240):843-4. doi: 10.1038/458843a. Nature. 2009. PMID: 19370023 No abstract available.
Similar articles
-
Neuroscience: A bar code for differentiation.Nature. 2009 Apr 16;458(7240):843-4. doi: 10.1038/458843a. Nature. 2009. PMID: 19370023 No abstract available.
-
A passport to neurotransmitter identity.Genome Biol. 2009;10(7):229. doi: 10.1186/gb-2009-10-7-229. Epub 2009 Jul 1. Genome Biol. 2009. PMID: 19591649 Free PMC article. Review.
-
Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny.Wiley Interdiscip Rev Dev Biol. 2020 Jul;9(4):e374. doi: 10.1002/wdev.374. Epub 2020 Feb 3. Wiley Interdiscip Rev Dev Biol. 2020. PMID: 32012462 Review.
-
A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans.Genes Dev. 2013 Jun 15;27(12):1391-405. doi: 10.1101/gad.217224.113. Genes Dev. 2013. PMID: 23788625 Free PMC article.
-
Cis-regulatory mechanisms of left/right asymmetric neuron-subtype specification in C. elegans.Development. 2009 Jan;136(1):147-60. doi: 10.1242/dev.030064. Development. 2009. PMID: 19060335 Free PMC article.
Cited by
-
Activity-dependent neurotransmitter respecification.Nat Rev Neurosci. 2012 Jan 18;13(2):94-106. doi: 10.1038/nrn3154. Nat Rev Neurosci. 2012. PMID: 22251956 Free PMC article. Review.
-
Establishment and maintenance of motor neuron identity via temporal modularity in terminal selector function.Elife. 2020 Oct 1;9:e59464. doi: 10.7554/eLife.59464. Elife. 2020. PMID: 33001031 Free PMC article.
-
The origin and evolution of cell types.Nat Rev Genet. 2016 Dec;17(12):744-757. doi: 10.1038/nrg.2016.127. Epub 2016 Nov 7. Nat Rev Genet. 2016. PMID: 27818507 Review.
-
Application of Fluorescence Microscopy and Behavioral Assays to Demonstrating Neuronal Connectomes and Neurotransmitter Systems in C. elegans.Neuromethods. 2021;172:399-426. Epub 2021 Jul 24. Neuromethods. 2021. PMID: 34754139 Free PMC article.
-
Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans.Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17708-13. doi: 10.1073/pnas.1108494108. Epub 2011 Oct 17. Proc Natl Acad Sci U S A. 2011. PMID: 22006307 Free PMC article.
References
REFERENCES FOR METHOD SECTION
-
- Etchberger JF, Hobert O. Vector-free DNA constructs improve transgene expression in C. elegans. Nat Methods. 2008;5:3. - PubMed
-
- Fukushige T, Krause M. The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos. Development. 2005;132:1795–805. - PubMed
-
- Rosen GD, Harry JD. Brain volume estimation from serial section measurements: a comparison of methodologies. J Neurosci Methods. 1990;35:115–24. - PubMed
-
- Gray PA, et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science. 2004;306:2255–7. - PubMed
References
-
- Iversen SD, Iversen LL. Dopamine: 50 years in perspective. Trends Neurosci. 2007;30:188–93. - PubMed
-
- Abeliovich A, Hammond R. Midbrain dopamine neuron differentiation: factors and fates. Dev Biol. 2007;304:447–54. - PubMed
-
- Nass R, Blakely RD. THE CAENORHABDITIS ELEGANS DOPAMINERGIC SYSTEM: Opportunities for Insights into Dopamine Transport and Neurodegeneration. Annu Rev Pharmacol Toxicol. 2003;43:521–44. - PubMed
-
- Schmid C, Schwarz V, Hutter H. AST-1, a novel ETS-box transcription factor, controls axon guidance and pharynx development in C. elegans. Dev Biol. 2006;293:403–13. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
