Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 18;9:6.
doi: 10.1186/1472-6882-9-6.

Frankincense Oil Derived From Boswellia Carteri Induces Tumor Cell Specific Cytotoxicity

Affiliations
Free PMC article

Frankincense Oil Derived From Boswellia Carteri Induces Tumor Cell Specific Cytotoxicity

Mark Barton Frank et al. BMC Complement Altern Med. .
Free PMC article

Abstract

Background: Originating from Africa, India, and the Middle East, frankincense oil has been important both socially and economically as an ingredient in incense and perfumes for thousands of years. Frankincense oil is prepared from aromatic hardened gum resins obtained by tapping Boswellia trees. One of the main components of frankincense oil is boswellic acid, a component known to have anti-neoplastic properties. The goal of this study was to evaluate frankincense oil for its anti-tumor activity and signaling pathways in bladder cancer cells.

Methods: Frankincense oil-induced cell viability was investigated in human bladder cancer J82 cells and immortalized normal bladder urothelial UROtsa cells. Temporal regulation of frankincense oil-activated gene expression in bladder cancer cells was identified by microarray and bioinformatics analysis.

Results: Within a range of concentration, frankincense oil suppressed cell viability in bladder transitional carcinoma J82 cells but not in UROtsa cells. Comprehensive gene expression analysis confirmed that frankincense oil activates genes that are responsible for cell cycle arrest, cell growth suppression, and apoptosis in J82 cells. However, frankincense oil-induced cell death in J82 cells did not result in DNA fragmentation, a hallmark of apoptosis.

Conclusion: Frankincense oil appears to distinguish cancerous from normal bladder cells and suppress cancer cell viability. Microarray and bioinformatics analysis proposed multiple pathways that can be activated by frankincense oil to induce bladder cancer cell death. Frankincense oil might represent an alternative intravesical agent for bladder cancer treatment.

Figures

Figure 1
Figure 1
Morphological changes of bladder carcinoma J82 and bladder urothelial UROtsa cells following frankincense oil stimulation. Bladder J82 and UROtsa cells were seeded in 96-well tissue culture plates at the concentration of 1 × 104 cells/mm2, cultured overnight for adherence, and either left untreated or subjected 1:1,000 dilution of frankincense oil stimulation. Images were taken at 24 hours following treatments for (A) untreated J82 cells, (B) J82 cells treated with frankincense oil, (C) untreated UROtsa cells, and (D) UROtsa cells treated with frankincense oil using Olympus IX51 inverted microscope. Notice cell shrinkage observed in J82 cells following frankincense oil treatment. In contrast, UROtsa cells did not experience noticeable morphological alteration following the same concentration of frankincense oil exposure.
Figure 2
Figure 2
Bladder cell survival in response to frankincense oil exposure. Cell viability was determined using (A) a colometric XTT assay at 24 hours and (B) trypan blue exclusion at 3 hours after frankincense oil stimulation. All experiments were prepared in triplicate for XTT assay and duplicate for trypan blue exclusion. Data were presented as mean ± standard error of mean (SEM) from at least 3 independent experiments. * indicates statistical difference between frankincense oil-treated J82 cells and UROtsa cells (P < 0.05).
Figure 3
Figure 3
Hierarchical clustering of frankincense oil-regulated apoptosis-related genes in J82 cells. The map was obtained using Biometric Research Branch (BRB) ArrayTools version 3.4.0 – Beta_2 software after log2 transformation of fluorescence intensities. Each column represents time intervals following frankincense oil exposure, and each row represents a gene probe set. The expression levels for individual genes are indicated by green/red color indicating an elevated/suppressed level of expression, respectively.
Figure 4
Figure 4
Frankincense oil-induced J82 cell death. To determine whether frankincense oil-induced apoptosis in bladder cancer cells, J82 cells were seeded in 60 mm tissue culture plates at the concentration of 2 × 105 cells per plate, cultured overnight for adherence, and either left untreated or treated with 1:1,000 dilution of frankincense oil. (A) TUNEL analysis was performed at 3 hours following treatment. Apoptotic cells with damaged DNA were stained positive with a bright red color (inserts). (B) DNA fragmentation was determined by separating genomic DNA on a 2% agaorse gel; and the gel image was captured using Gel Doc 100 system (Bio-Rad, Hercules, CA).

Similar articles

See all similar articles

Cited by 22 articles

See all "Cited by" articles

References

    1. Maloney GA. Gold, frankincense, and myrrh : an introduction to Eastern Christian spirituality. New York: Crossroads Pub. Co; 1997.
    1. Banno N, Akihisa T, Yasukawa K, Tokuda H, Tabata K, Nakamura Y, Nishimura R, Kimura Y, Suzuki T. Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. J Ethnopharmacol. 2006;107:249–253. doi: 10.1016/j.jep.2006.03.006. - DOI - PubMed
    1. Langmead L, Rampton DS. Review article: complementary and alternative therapies for inflammatory bowel disease. Aliment Pharmacol Ther. 2006;23:341–349. doi: 10.1111/j.1365-2036.2006.02761.x. - DOI - PubMed
    1. Chevrier MR, Ryan AE, Lee DY, Zhongze M, Wu-Yan Z, Via CS. Boswellia carterii extract inhibits TH1 cytokines and promotes TH2 cytokines in vitro. Clin Diag Lab Immunol. 2005;12:575–580. doi: 10.1128/CDLI.12.5.575-580.2005. - DOI - PMC - PubMed
    1. Sharma ML, Khajuria A, Kaul A, Singh S, Singh GB, Atal CK. Effect of salai guggal ex-Boswellia serrata on cellular and humoral immune responses and leucocyte migration. Agents Actions. 1988;24:161–164. doi: 10.1007/BF01968095. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources

Feedback