Excitatory GABA action induced by high [Cl(-)](i) is thought to contribute to seizure generation in neonatal neurons although the mechanism of this effect remains unclear. We report that bumetanide, a NKCC1 antagonist, reduces driving force of GABA-mediated currents (DF(GABA)) in neonatal hippocampal neurons and blocks the giant depolarizing potentials (GDPs), a spontaneous pattern of network activity. In the preparation composed of two intact interconnected hippocampi, bumetanide did not prevent generation of kainate-induced seizures, their propagation to the contralateral hippocampus, and formation of an epileptogenic mirror focus. However, in the isolated mirror focus, bumetanide effectively blocked spontaneous epileptiform activity transforming it to the GDP-like activity pattern. Bumetanide partially reduced DF(GABA) and therefore the excitatory action of GABA in epileptic neurons. Therefore bumetanide is a potent anticonvulsive agent although it cannot prevent formation of the epileptogenic mirror focus. We suggest that an additional mechanism other than NKCC1-mediated contributes to the persistent increase of DF(GABA) in epileptic neurons.