Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes
- PMID: 19302708
- PMCID: PMC2666765
- DOI: 10.1186/1471-2164-10-119
Transcriptional signatures of BALB/c mouse macrophages housing multiplying Leishmania amazonensis amastigotes
Abstract
Background: Mammal macrophages (MPhi) display a wide range of functions which contribute to surveying and maintaining tissue integrity. One such function is phagocytosis, a process known to be subverted by parasites like Leishmania (L). Indeed, the intracellular development of L. amazonensis amastigote relies on the biogenesis and dynamic remodelling of a phagolysosome, termed the parasitophorous vacuole, primarily within dermal MPhi.
Results: Using BALB/c mouse bone marrow-derived MPhi loaded or not with amastigotes, we analyzed the transcriptional signatures of MPhi 24 h later, when the amastigote population was growing. Total RNA from MPhi cultures were processed and hybridized onto Affymetrix Mouse430_2 GeneChips, and some transcripts were also analyzed by Real-Time quantitative PCR (RTQPCR). A total of 1,248 probe-sets showed significant differential expression. Comparable fold-change values were obtained between the Affymetrix technology and the RTQPCR method. Ingenuity Pathway Analysis software pinpointed the up-regulation of the sterol biosynthesis pathway (p-value = 1.31e-02) involving several genes (1.95 to 4.30 fold change values), and the modulation of various genes involved in polyamine synthesis and in pro/counter-inflammatory signalling.
Conclusion: Our findings suggest that the amastigote growth relies on early coordinated gene expression of the MPhi lipid and polyamine pathways. Moreover, these MPhi hosting multiplying L. amazonensis amastigotes display a transcriptional profile biased towards parasite-and host tissue-protective processes.
Figures
Similar articles
-
Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites.J Cell Sci. 2002 Jun 1;115(Pt 11):2303-16. doi: 10.1242/jcs.115.11.2303. J Cell Sci. 2002. PMID: 12006615
-
Unveiling pathways used by Leishmania amazonensis amastigotes to subvert macrophage function.Immunol Rev. 2007 Oct;219:66-74. doi: 10.1111/j.1600-065X.2007.00559.x. Immunol Rev. 2007. PMID: 17850482 Review.
-
Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live Leishmania amazonensis amastigotes.PLoS Negl Trop Dis. 2013 Jun 13;7(6):e2276. doi: 10.1371/journal.pntd.0002276. Print 2013. PLoS Negl Trop Dis. 2013. PMID: 23785538 Free PMC article.
-
Presentation of the Leishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites.Eur J Immunol. 1999 Mar;29(3):762-73. doi: 10.1002/(SICI)1521-4141(199903)29:03<762::AID-IMMU762>3.0.CO;2-4. Eur J Immunol. 1999. PMID: 10092078
-
Living in a phagolysosome; metabolism of Leishmania amastigotes.Trends Parasitol. 2007 Aug;23(8):368-75. doi: 10.1016/j.pt.2007.06.009. Epub 2007 Jul 2. Trends Parasitol. 2007. PMID: 17606406 Review.
Cited by
-
Leishmania infection upregulates and engages host macrophage Argonaute 1, and system-wide proteomics reveals Argonaute 1-dependent host response.Front Immunol. 2023 Nov 30;14:1287539. doi: 10.3389/fimmu.2023.1287539. eCollection 2023. Front Immunol. 2023. PMID: 38098491 Free PMC article.
-
Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages.Front Genet. 2023 Jan 4;13:1051568. doi: 10.3389/fgene.2022.1051568. eCollection 2022. Front Genet. 2023. PMID: 36685903 Free PMC article.
-
Transcriptional Profiling of Leishmania infantum Infected Dendritic Cells: Insights into the Role of Immunometabolism in Host-Parasite Interaction.Microorganisms. 2022 Jun 22;10(7):1271. doi: 10.3390/microorganisms10071271. Microorganisms. 2022. PMID: 35888991 Free PMC article.
-
Modulation of Cholesterol Pathways in Human Macrophages Infected by Clinical Isolates of Leishmania infantum.Front Cell Infect Microbiol. 2022 Apr 29;12:878711. doi: 10.3389/fcimb.2022.878711. eCollection 2022. Front Cell Infect Microbiol. 2022. PMID: 35573792 Free PMC article.
-
Immune Responses in Leishmaniasis: An Overview.Trop Med Infect Dis. 2022 Mar 31;7(4):54. doi: 10.3390/tropicalmed7040054. Trop Med Infect Dis. 2022. PMID: 35448829 Free PMC article. Review.
References
-
- Antoine JC, Prina E, Lang T, Courret N. The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends Microbiol. 1998;6:392–401. - PubMed
-
- Courret N, Frehel C, Gouhier N, Pouchelet M, Prina E, Roux P, Antoine JC. Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. J Cell Sci. 2002;115:2303–2316. - PubMed
-
- Provenzano M, Mocellin S. Complementary techniques: validation of gene expression data by quantitative real time PCR. Adv Exp Med Biol. 2007;593:66–73. - PubMed
-
- Lukacs GL, Rotstein OD, Grinstein S. Determinants of the phagosomal pH in macrophages. In situ assessment of vacuolar H(+)-ATPase activity, counterion conductance, and H+ "leak". J Biol Chem. 1991;266:24540–24548. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
