Automated measurement of the lower inflection point in a pediatric lung model

Pediatr Crit Care Med. 2009 Jul;10(4):511-6. doi: 10.1097/PCC.0b013e3181a0e274.

Abstract

Objective: To determine which flow setting most accurately detects the lower inflection point (Pflex) using an automated constant flow method and varying endotracheal tube (ETT) sizes with and without an airleak in a pediatric lung model.

Design: Interventional laboratory study.

Setting: Children's hospital research center.

Interventions: A pediatric lung model was created with Pflexs of the inspiratory pressure-volume (P-V) curve set at 5 and 10 cm H2O using the ASL 5000 Test Lung (IngMar Medical, Pittsburgh, PA). Three ETT sizes (3.0, 4.0, 5.0 mm) were tested with and without a 25% airleak. P-V curves were obtained using an automated constant flow method at ten different flow rates.

Measurements and main results: Without an ETT airleak, the lowest flow of 0.5 L/min led to the most accurate determination of Pflex regardless of ETT size or set Pflex (p < 0.001). When a 25% leak was introduced, accuracy of measured Pflex depended on both ETT size (p < 0.001) and flow rate (p < 0.001). Optimum flow rates for Pflex determination were 0.5, 1.0, and 1.5 L/min at Pflex of 5 cm H2O, and 2.0, 3.5, and 4.5 L/min at 10 cm H2O for 3.0, 4.0, and 5.0 mm ETTs, respectively (p < 0.001).

Conclusions: Estimation of Pflex can be achieved using automated P-V curves with ETTs appropriate for pediatric use, with and without an airleak. ETT size and flow rate affect the accuracy of these measurements when an airleak is present, and use of increased flow rates to create the automated P-V curves can reduce error. These data support the idea that a low-flow technique provides the most accurate determination of Pflex in pediatric patients without a leak around their ETT, whereas increased flows are needed to compensate when an ETT airleak is present.

MeSH terms

  • Humans
  • Lung*
  • Models, Biological*
  • Positive-Pressure Respiration / methods*
  • Respiratory Mechanics*