Y-piece temperature and humidification during mechanical ventilation

Respir Care. 2009 Apr;54(4):480-6.


Background: Practitioners often presume there is adequate humidification in the ventilator circuit if the Y-piece is at a specified temperature, but control of Y-piece temperature may be inadequate to ensure adequate humidification.

Methods: In an in vitro bench model we measured water-vapor delivery with several heated humidification setups and a wide range of minute volume (V (E)) values. The setup included a condenser, hygrometry, and thermometer. First, we calibrated the system with a point-source humidifier and water pump. Then we tested the water-vapor delivery during non-heated-wire humidification and during heated-wire humidification with a temperature gradient of +3 degrees C, 0 degrees C, and -3 degrees C between the humidifier and the Y-piece. We compared the results to 2 recommended humidification values: 100% saturated (absolute humidity 44 mg H(2)O/L) gas at 37 degrees C (saturated/37 degrees C); and 75% saturated (absolute humidity 33 mg H(2)O/L), which is the humidity recommended by the International Organization for Standardization (the ISO standard). In all the experiments the setup was set to provide 35 degrees C at the Y-piece.

Results: Our method for measuring water-vapor delivery closely approximated the amount delivered by a calibrated pump, but slightly underestimated the water-vapor delivery in all the experiments and the whole V (E) range. At all V (E) values, water-vapor delivery during non-heated-wire humidification matched or exceeded saturated/37 degrees C and was significantly greater than that during heated-wire humidification. During heated-wire humidification, water-vapor delivery varied with the temperature gradient and did not reach saturated/37 degrees C at V (E) > 6 L/min. Water-vapor delivery with the negative temperature gradient was below the ISO standard.

Conclusions: Maintaining temperature at one point in the inspiratory circuit (eg, Y-piece), does not ensure adequate water-vapor delivery. Other factors (humidification system, V (E), gradient setting) are critical. At a given temperature, humidification may be significantly higher or lower than expected.

MeSH terms

  • Calibration
  • Equipment Design
  • Humans
  • Humidity
  • Respiration, Artificial* / instrumentation
  • Steam
  • Temperature
  • Ventilators, Mechanical*


  • Steam