Role of the sodium hydrogen exchanger in maitotoxin-induced cell death in cultured rat cortical neurons

Toxicon. 2009 Aug;54(2):95-102. doi: 10.1016/j.toxicon.2009.03.018. Epub 2009 Mar 26.

Abstract

Maitotoxin (MTX) is one of the most potent toxins known to date. It causes massive calcium (Ca(2+)) influx and necrotic cell death in various tissues. However, the exact mechanism(s) underlying its cellular toxicity is not fully understood. In the present study, the role of the sodium hydrogen exchanger (NHE) in MTX-induced increases in intracellular Ca(2+) and subsequent cell death were investigated in cultured rat cortical neurons. Intracellular Ca(2+) concentrations ([Ca(2+)](i)) were measured fluorimetrically using FURA-2 as the fluorescence indicator. Cell death was measured with the alamarBlue cell viability assay and the vital dye ethidium bromide (EB) uptake assay. Results showed that MTX increased, in a concentration dependent manner, both [Ca(2+)](i) and cell death in cortical neurons. Decreasing the pH of the treatment medium from 7.5 to 6.0 diminished MTX-induced cell death. The protection offered by lowering extracellular pH was not due to MTX degradation, because it was still effective even if the cells were treated with MTX in normal pH and then switched to a lower pH. Pretreatment of cells with the specific NHE inhibitor, 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), prevented MTX-induced increases in [Ca(2+)](i), as well as cell death in a concentration dependent manner. Furthermore, knockdown of NHE1 by SiRNA transfection suppressed MTX-induced cell death in human embryonic kidney (HEK) cells. Together, these results suggest that NHE1 plays a major role in MTX-induced neurotoxicity.

MeSH terms

  • Acidosis / metabolism
  • Amiloride / analogs & derivatives
  • Amiloride / pharmacology
  • Animals
  • Antimetabolites, Antineoplastic / toxicity
  • Calcium / metabolism
  • Cell Death / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Cerebral Cortex / cytology*
  • Cerebral Cortex / drug effects
  • Female
  • Fluorometry
  • Marine Toxins / toxicity*
  • Methotrexate / toxicity
  • Necrosis
  • Neurons / drug effects*
  • Neuroprotective Agents / pharmacology
  • Oxocins / toxicity*
  • Pregnancy
  • RNA, Small Interfering
  • Rats
  • Rats, Sprague-Dawley
  • Sodium-Hydrogen Exchangers / antagonists & inhibitors
  • Sodium-Hydrogen Exchangers / physiology*

Substances

  • Antimetabolites, Antineoplastic
  • Marine Toxins
  • Neuroprotective Agents
  • Oxocins
  • RNA, Small Interfering
  • Sodium-Hydrogen Exchangers
  • Amiloride
  • maitotoxin
  • Calcium
  • ethylisopropylamiloride
  • Methotrexate