An elegant miRror: microRNAs in stem cells, developmental timing and cancer

Chromosoma. 2009 Aug;118(4):405-18. doi: 10.1007/s00412-009-0210-z. Epub 2009 Apr 3.


MicroRNAs (miRNAs) were first discovered in genetic screens for regulators of developmental timing in the stem-cell-like seam cell lineage in Caenorhabditis elegans. As members of the heterochronic pathway, the lin-4 and let-7 miRNAs are required in the seam cells for the correct progression of stage-specific events and to ensure that cell cycle exit and terminal differentiation occur at the correct time. Other heterochronic genes such as lin-28 and lin-41 are direct targets of the lin-4 and let-7 miRNAs. Recent findings on the functions of the let-7 and lin-4/mir-125 miRNA families and lin-28 and lin-41 orthologs from a variety of organisms suggest that core elements of the heterochronic pathway are retained in mammalian stem cells and development. In particular, these genes appear to form bistable switches via double-negative feedback loops in both nematode and mammalian stem cell development, the functional relevance of which is finally becoming clear. let-7 inhibits stem cell self-renewal in both normal and cancer stem cells of the breast and acts as a tumor suppressor in lung and breast cancer. let-7 also promotes terminal differentiation at the larval to adult transition in both nematode stem cells and fly wing imaginal discs and inhibits proliferation of human lung and liver cancer cells. Conversely, LIN-28 is a highly specific embryonic stem cell marker and is one of four "stemness" factors used to reprogram adult fibroblasts into induced pluripotent stem cells; furthermore, lin-28 is oncogenic in hepatocellular carcinomas. Therefore, a core module of heterochronic genes--lin-28, lin-41, let-7, and lin-4/mir-125-acts as an ancient regulatory switch for differentiation in stem cells (and in some cancers), illustrating that nematode seam cells mirror miRNA regulatory networks in mammalian stem cells during both normal development and cancer.

Publication types

  • Review

MeSH terms

  • Animals
  • Caenorhabditis elegans / cytology
  • Caenorhabditis elegans / genetics*
  • Caenorhabditis elegans / growth & development
  • Gene Expression Regulation, Developmental
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Models, Biological
  • Neoplasms / genetics
  • Neoplasms / pathology
  • Stem Cells / cytology
  • Stem Cells / metabolism*
  • Time Factors


  • MicroRNAs
  • let-7 microRNA, C elegans
  • lin-4 microRNA, C elegans