Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30

Mol Endocrinol. 2009 Jul;23(7):1052-64. doi: 10.1210/me.2008-0262. Epub 2009 Apr 2.

Abstract

Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Adhesion / drug effects
  • Cells, Cultured
  • ErbB Receptors / genetics*
  • Estrogens / pharmacology*
  • Extracellular Matrix / drug effects
  • Extracellular Matrix / metabolism
  • Female
  • Fibronectins / metabolism*
  • Gene Expression Regulation / drug effects
  • Humans
  • Integrin alpha5beta1 / metabolism
  • Mice
  • Models, Biological
  • Protein Multimerization / drug effects*
  • Receptors, Estrogen
  • Receptors, G-Protein-Coupled / physiology*
  • Time Factors
  • Transcriptional Activation / drug effects

Substances

  • Estrogens
  • Fibronectins
  • GPER1 protein, human
  • Integrin alpha5beta1
  • Receptors, Estrogen
  • Receptors, G-Protein-Coupled
  • EGFR protein, human
  • ErbB Receptors