Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Nov 24;164(1):174-90.
doi: 10.1016/j.neuroscience.2009.04.006. Epub 2009 Apr 9.

Endophenotypes in normal brain morphology and Alzheimer's disease: a review

Affiliations
Review

Endophenotypes in normal brain morphology and Alzheimer's disease: a review

C Reitz et al. Neuroscience. .

Abstract

Late-onset Alzheimer's disease is a common complex disorder of old age. Though these types of disorders can be highly heritable, they differ from single-gene (Mendelian) diseases in that their causes are often multifactorial with both genetic and environmental components. Genetic risk factors that have been firmly implicated in the cause are mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes, which are found in large multi-generational families with an autosomal dominant pattern of disease inheritance, the apolipoprotein E (APOE)epsilon4 allele and the sortilin-related receptor (SORL1) gene. Environmental factors that have been associated with late-onset Alzheimer's disease include depressive illness, various vascular risk factors, level of education, head trauma and estrogen replacement therapy. This complexity may help explain their high prevalence from an evolutionary perspective, but the etiologic complexity makes identification of disease-related genes much more difficult. The "endophenotype" approach is an alternative method for measuring phenotypic variation that may facilitate the identification of susceptibility genes for complexly inherited traits. The usefulness of endophenotypes in genetic analyses of normal brain morphology and, in particular for Alzheimer's disease will be reviewed as will the implications of these findings for models of disease causation. Given that the pathways from genotypes to end-stage phenotypes are circuitous at best, identifying endophenotypes more proximal to the effects of genetic variation may expedite the attempts to link genetic variants to disorders.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Endophenotypes in the cascade between a genetic sequence variation and the Alzheimer’s disease syndrome.

Similar articles

Cited by

References

    1. Ashburner J, Friston KJ. Why voxel-based morphometry should be used. Neuroimage. 2001;14(6):1238–1243. - PubMed
    1. Baare WF, Hulshoff Pol HE, Boomsma DI, Posthuma D, de Geus EJ, Schnack HG, van Haren NE, van Oel CJ, Kahn RS. Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex. 2001;11(9):816–824. - PubMed
    1. Bartley AJ, Jones DW, Weinberger DR. Genetic variability of human brain size and cortical gyral patterns. Brain. 1997;120(Pt 2):257–269. - PubMed
    1. Bertram L, Hiltunen M, Parkinson M, Ingelsson M, Lange C, Ramasamy K, Mullin K, Menon R, Sampson AJ, Hsiao MY, Elliott KJ, Velicelebi G, Moscarillo T, Hyman BT, Wagner SL, Becker KD, Blacker D, Tanzi RE. Family-based association between Alzheimer’s disease and variants in UBQLN1. N Engl J Med. 2005;352(9):884–894. - PubMed
    1. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007 Jan;39(1):17–23. - PubMed

Publication types