Specific and slow inhibition of the kir2.1 K+ channel by gambogic acid
- PMID: 19366693
- PMCID: PMC2708840
- DOI: 10.1074/jbc.M901586200
Specific and slow inhibition of the kir2.1 K+ channel by gambogic acid
Abstract
Although Kir2.1 channels are important in the heart and other excitable cells, there are virtually no specific drugs for this K+ channel. In search of Kir2.1 modulators, we screened a library of 720 naturally occurring compounds using a yeast strain in which mammalian Kir2.1 enables growth at low [K+]. One of the identified compounds, gambogic acid (GA), potently (EC(50) < or = 100 nm) inhibited Kir2.1 channels in mammalian cells when applied chronically for 3 h. This potent and slow inhibition was not seen with Kv2.1, HERG or Kir1.1 channels. However, acutely applied GA acted as a weak (EC(50) = approximately 10 mum) non-selective K+ channel blocker. Intracellular delivery of GA via a patch pipette did not potentiate the acute effect of GA on Kir2.1, showing that slow uptake is not responsible for the delayed, potent effect. Immunoblots showed that total Kir2.1 protein expression was not altered by GA. Similarly, immunostaining of intact cells expressing Kir2.1 with an extracellular epitope tag demonstrated that GA does not affect Kir2.1 surface expression. However, the 3-h treatment with GA caused redistribution of Kir2.1 and Kv2.1 from the Triton X-100-insoluble to the Triton X-100-soluble membrane fraction. Thus, GA changes the K+ channel membrane microenvironment resulting in potent, specific, and slow acting inhibition of Kir2.1 channels.
Figures
Similar articles
-
Inhibition of inwardly rectifying Kir2.x channels by the novel anti-cancer agent gambogic acid depends on both pore block and PIP2 interference.Naunyn Schmiedebergs Arch Pharmacol. 2017 Jul;390(7):701-710. doi: 10.1007/s00210-017-1372-5. Epub 2017 Apr 2. Naunyn Schmiedebergs Arch Pharmacol. 2017. PMID: 28365825
-
Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels.Biophys J. 2004 Dec;87(6):3850-61. doi: 10.1529/biophysj.104.043273. Epub 2004 Oct 1. Biophys J. 2004. PMID: 15465867 Free PMC article.
-
Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions.J Pharmacol Exp Ther. 2009 Nov;331(2):563-73. doi: 10.1124/jpet.109.156075. Epub 2009 Aug 4. J Pharmacol Exp Ther. 2009. PMID: 19654266
-
Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1.Physiol Genomics. 2004 Oct 4;19(2):155-69. doi: 10.1152/physiolgenomics.00096.2004. Epub 2004 Aug 17. Physiol Genomics. 2004. PMID: 15316115
-
Physiological role of inward rectifier K(+) channels in vascular smooth muscle cells.Pflugers Arch. 2008 Oct;457(1):137-47. doi: 10.1007/s00424-008-0512-7. Epub 2008 Apr 25. Pflugers Arch. 2008. PMID: 18437413 Review.
Cited by
-
Challenges and innovation: Disease modeling using human-induced pluripotent stem cell-derived cardiomyocytes.Front Cardiovasc Med. 2022 Aug 12;9:966094. doi: 10.3389/fcvm.2022.966094. eCollection 2022. Front Cardiovasc Med. 2022. PMID: 36035948 Free PMC article. Review.
-
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications.Handb Exp Pharmacol. 2021;267:277-356. doi: 10.1007/164_2021_501. Handb Exp Pharmacol. 2021. PMID: 34345939 Review.
-
Weak Electromagnetic Fields Accelerate Fusion of Myoblasts.Int J Mol Sci. 2021 Apr 23;22(9):4407. doi: 10.3390/ijms22094407. Int J Mol Sci. 2021. PMID: 33922487 Free PMC article.
-
Antidepressive and anxiolytic effects of ostruthin, a TREK-1 channel activator.PLoS One. 2018 Aug 15;13(8):e0201092. doi: 10.1371/journal.pone.0201092. eCollection 2018. PLoS One. 2018. PMID: 30110354 Free PMC article.
-
Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox.Genetics. 2018 Jul;209(3):637-650. doi: 10.1534/genetics.118.301026. Genetics. 2018. PMID: 29967058 Free PMC article. Review.
References
-
- Plaster N. M., Tawil R., Tristani-Firouzi M., Canún S., Bendahhou S., Tsunoda A., Donaldson M. R., Iannaccone S. T., Brunt E., Barohn R., Clark J., Deymeer F., George A. L., Jr., Fish F. A., Hahn A., Nitu A., Ozdemir C., Serdaroglu P., Subramony S. H., Wolfe G., Fu Y. H., Ptácek L. J. ( 2001) Cell 105, 511– 519 - PubMed
-
- Priori S. G., Pandit S. V., Rivolta I., Berenfeld O., Ronchetti E., Dhamoon A., Napolitano C., Anumonwo J., di Barletta M. R., Gudapakkam S., Bosi G., Stramba-Badiale M., Jalife J. ( 2005) Circ. Res. 96, 800– 807 - PubMed
-
- Matsuda H., Saigusa A., Irisawa H. ( 1987) Nature 325, 156– 159 - PubMed
-
- Lopatin A. N., Makhina E. N., Nichols C. G. ( 1994) Nature 372, 366– 369 - PubMed
-
- Fakler B., Brändle U., Glowatzki E., Weidemann S., Zenner H. P., Ruppersberg J. P. ( 1995) Cell 80, 149– 154 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
