Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice

J Clin Invest. 2009 May;119(5):1230-40. doi: 10.1172/JCI38022. Epub 2009 Apr 20.


Ca2+/calmodulin-dependent kinase II (CaMKII) has been implicated in cardiac hypertrophy and heart failure. We generated mice in which the predominant cardiac isoform, CaMKIIdelta, was genetically deleted (KO mice), and found that these mice showed no gross baseline changes in ventricular structure or function. In WT and KO mice, transverse aortic constriction (TAC) induced comparable increases in relative heart weight, cell size, HDAC5 phosphorylation, and hypertrophic gene expression. Strikingly, while KO mice showed preserved hypertrophy after 6-week TAC, CaMKIIdelta deficiency significantly ameliorated phenotypic changes associated with the transition to heart failure, such as chamber dilation, ventricular dysfunction, lung edema, cardiac fibrosis, and apoptosis. The ratio of IP3R2 to ryanodine receptor 2 (RyR2) and the fraction of RyR2 phosphorylated at the CaMKII site increased significantly during development of heart failure in WT mice, but not KO mice, and this was associated with enhanced Ca2+ spark frequency only in WT mice. We suggest that CaMKIIdelta contributes to cardiac decompensation by enhancing RyR2-mediated sarcoplasmic reticulum Ca2+ leak and that attenuating CaMKIIdelta activation can limit the progression to heart failure.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta / surgery
  • Calcium Signaling / physiology
  • Calcium-Binding Proteins / metabolism
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / physiology*
  • Cardiomegaly / complications*
  • Cardiomegaly / etiology
  • Cardiomegaly / metabolism
  • Cardiomegaly / pathology
  • Constriction, Pathologic / complications
  • Female
  • Gene Expression / genetics
  • Heart / anatomy & histology
  • Heart / physiology
  • Heart Failure / etiology*
  • Heart Failure / metabolism*
  • Heart Failure / pathology
  • Heart Failure / physiopathology
  • Histone Deacetylases / metabolism
  • Inositol 1,4,5-Trisphosphate Receptors / metabolism
  • Lung / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mice, Transgenic
  • Myocardium / metabolism
  • Myocardium / pathology
  • Phosphorylation
  • Protein Kinase C / metabolism
  • Ryanodine Receptor Calcium Release Channel / metabolism
  • Up-Regulation / physiology
  • Ventricular Pressure / physiology*


  • Calcium-Binding Proteins
  • Inositol 1,4,5-Trisphosphate Receptors
  • Ryanodine Receptor Calcium Release Channel
  • phospholamban
  • protein kinase D
  • Protein Kinase C
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • HDAC5 protein, human
  • Histone Deacetylases