Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 126 (1), 13-50

Genome-wide Association Studies in ADHD


Genome-wide Association Studies in ADHD

Barbara Franke et al. Hum Genet.


Attention-deficit/hyperactivity disorder, ADHD, is a common and highly heritable neuropsychiatric disorder that is seen in children and adults. Although heritability is estimated at around 76%, it has been hard to find genes underlying the disorder. ADHD is a multifactorial disorder, in which many genes, all with a small effect, are thought to cause the disorder in the presence of unfavorable environmental conditions. Whole genome linkage analyses have not yet lead to the identification of genes for ADHD, and results of candidate gene-based association studies have been able to explain only a tiny part of the genetic contribution to disease, either. A novel way of performing hypothesis-free analysis of the genome suitable for the identification of disease risk genes of considerably smaller effect is the genome-wide association study (GWAS). So far, five GWAS have been performed on the diagnosis of ADHD and related phenotypes. Four of these are based on a sample set of 958 parent-child trio's collected as part of the International Multicentre ADHD Genetics (IMAGE) study and genotyped with funds from the Genetic Association Information Network (GAIN). The other is a pooled GWAS including adult patients with ADHD and controls. None of the papers reports any associations that are formally genome-wide significant after correction for multiple testing. There is also very limited overlap between studies, apart from an association with CDH13, which is reported in three of the studies. Little evidence supports an important role for the 'classic' ADHD genes, with possible exceptions for SLC9A9, NOS1 and CNR1. There is extensive overlap with findings from other psychiatric disorders. Though not genome-wide significant, findings from the individual studies converge to paint an interesting picture: whereas little evidence-as yet-points to a direct involvement of neurotransmitters (at least the classic dopaminergic, noradrenergic and serotonergic pathways) or regulators of neurotransmission, some suggestions are found for involvement of 'new' neurotransmission and cell-cell communication systems. A potential involvement of potassium channel subunits and regulators warrants further investigation. More basic processes also seem involved in ADHD, like cell division, adhesion (especially via cadherin and integrin systems), neuronal migration, and neuronal plasticity, as well as related transcription, cell polarity and extracellular matrix regulation, and cytoskeletal remodeling processes. In conclusion, the GWAS performed so far in ADHD, though far from conclusive, provide a first glimpse at genes for the disorder. Many more (much larger studies) will be needed. For this, collaboration between researchers as well as standardized protocols for phenotyping and DNA-collection will become increasingly important.


Fig. 1
Fig. 1
Simplified schematic representation of the endophenotype concept in psychiatric genetics. Many genes (depicted in an oversimplified way as gene A to I) are involved in causing a disease symptom and the categorical disease phenotype. A reduced number of genes is involved in disease related endophenotypes, like ‘Function of a brain unit’ (Level 1), as assessed through performance on neuropsychological tests; even less genes play a role if an endophenotype at levels 2 or 3 is used for genetic association studies. On level 2, endophenotypes measured through (structural and functional) neuroimaging are shown, on level 3 cellular behavior, assessed through e.g. assays measuring migration, apoptosis or cell division rates are shown

Similar articles

See all similar articles

Cited by 141 PubMed Central articles

See all "Cited by" articles


    1. Acosta MT, Arcos-Burgos M, Muenke M. Attention deficit/hyperactivity disorder (ADHD): complex phenotype, simple genotype? Genet Med. 2004;6:1–15. - PubMed
    1. Addamo PK, Farrow M, Hoy KE, Bradshaw JL, Georgiou-Karistianis N. The effects of age and attention on motor overflow production—a review. Brain Res Rev. 2007;54:189–204. - PubMed
    1. Albertson DN, Pruetz B, Schmidt CJ, Kuhn DM, Kapatos G, Bannon MJ. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem. 2004;88:1211–1219. - PMC - PubMed
    1. Alcaraz WA, Gold DA, Raponi E, Gent PM, Concepcion D, Hamilton BA. Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation. Proc Natl Acad Sci USA. 2006;103:19424–19429. - PMC - PubMed
    1. Allen-Brady K, Miller J, Matsunami N, Stevens J, Block H, Farley M, Krasny L, Pingree C, Lainhart J, Leppert M, McMahon WM, Coon H (2008) A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol Psychiatry. Feb 19 [Epub ahead of print] - PubMed

LinkOut - more resources