Free-standing nanoparticle superlattice sheets controlled by DNA

Nat Mater. 2009 Jun;8(6):519-25. doi: 10.1038/nmat2440. Epub 2009 May 3.


Free-standing nanoparticle superlattices (suspended highly ordered nanoparticle arrays) are ideal for designing metamaterials and nanodevices free of substrate-induced electromagnetic interference. Here, we report on the first DNA-based route towards monolayered free-standing nanoparticle superlattices. In an unconventional way, DNA was used as a 'dry ligand' in a microhole-confined, drying-mediated self-assembly process. Without the requirement of specific Watson-Crick base-pairing, we obtained discrete, free-standing superlattice sheets in which both structure (inter-particle spacings) and functional properties (plasmonic and mechanical) can be rationally controlled by adjusting DNA length. In particular, the edge-to-edge inter-particle spacing for monolayered superlattice sheets can be tuned up to 20 nm, which is a much wider range than has been achieved with alkyl molecular ligands. Our method opens a simple yet efficient avenue towards the assembly of artificial nanoparticle solids in their ultimate thickness limit--a promising step that may enable the integration of free-standing superlattices into solid-state nanodevices.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • DNA / chemistry*
  • Microscopy, Atomic Force
  • Microscopy, Electron, Transmission
  • Nanoparticles*


  • DNA